Project/Area Number |
17J06514
|
Research Category |
Grant-in-Aid for JSPS Fellows
|
Allocation Type | Single-year Grants |
Section | 国内 |
Research Field |
Economic statistics
|
Research Institution | The University of Tokyo |
Principal Investigator |
伊藤 翼 東京大学, 経済学研究科, 特別研究員(DC2)
|
Project Period (FY) |
2017-04-26 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥2,100,000 (Direct Cost: ¥2,100,000)
Fiscal Year 2018: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2017: ¥1,100,000 (Direct Cost: ¥1,100,000)
|
Keywords | 小地域推定 / 高次元共分散行列 / 線形混合効果モデル / 信頼領域 / 多変量解析 / 高次元統計学 |
Outline of Annual Research Achievements |
サンプルサイズが小さい地域の何らかの平均値を推定する際、標本平均では不安定になることを小地域推定問題といい、地域効果を組み込んだ混合効果モデルから得た予測量が、他地域の情報も利用することで安定した推定量となる。 そこで、多変量混合効果モデルについて、地域効果の共分散行列の構造が完全に未知である設定のモデルを考察した。モデルに基づいた予測量を得るためには、地域効果の共分散行列を推定する必要がある。そこで、モーメント法に基づいた推定量を共分散行列が持つべき性質を満たすように修正したものを提案した。また、多変量モデルの予測量がもつ予測リスクを評価するために、平均二乗誤差(MSE)を漸近的に評価し、その2次漸近不偏推定量を導出した。 また、リスクの指標としては、信頼区間(領域)がよく用いられる。単純な信頼領域は、母数の点推定量とそのMSEを用いて容易に構成できるが、それが真の値を含む確率(coverage probability, CP)が信頼水準と同等、またはそれ以上になる保証がない問題がある。そこで、CPが信頼水準を達成する信頼領域の構成を行った。具体的には、マハラノビス距離で与えられる統計量の特性関数を漸近的に評価することで、その漸近分布をもとめ、補正後の統計量が自由度がデータの次元に等しいカイ二乗分布に従うための補正項をもとめた。またこの補正項は、変量効果の共分散行列の推定量の逆行列を含むため、特に高次元の場合に、推定量の固有値が0に近いと不安定になるといった問題がある。そこで、推定量を固有値が0から離れた値になるように修正したものを提案した。以上の信頼領域は、リスクの近似値を用いて陽に構成できるため、数値計算が容易に、短時間に行えるといった利点を持っている。 数値実験の結果、単純な信頼領域のCPが信頼水準を達成しない一方で、提案した信頼領域がCPを達成することが確認できた。
|
Research Progress Status |
平成30年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
平成30年度が最終年度であるため、記入しない。
|