• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Advances in the Theory of Distributional Learning of Formal Languages

Research Project

Project/Area Number 17K00026
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Theory of informatics
Research InstitutionHosei University (2018-2022)
National Institute of Informatics (2017)

Principal Investigator

Kanazawa Makoto  法政大学, 理工学部, 教授 (20261886)

Project Period (FY) 2017-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords文脈自由文法 / 文法推論 / 正例と所属性質問からの極限同定 / 分布学習 / 拡張正規閉包 / 拡張正規表現 / 有限文脈特性 / 所属性質問 / 正規木言語 / 正規演算 / 閉包性 / 等価性判定 / 情報基礎 / 形式言語
Outline of Final Research Achievements

Distributional learning algorithms for context-free languages work by assigning to each nonterminal of the hypothesized grammar a string set that can be decided by making queries to the membership oracle for the target language. In previous works, these string sets were limited to those that can be represented by finite conjunctions of membership queries. The present study presented two generalizations. The first generalization allows arbitrary Boolean combinations of membership queries in place of finite conjunctions. The second generalization allows regular operations in addition Boolean operations, and represents each nonterminal by an extended regular expression containing atoms for membership queries. These generalizations greatly extend the class of context-free languages that can be targeted by distributional learning algorithms.

Academic Significance and Societal Importance of the Research Achievements

いまだに謎に包まれている人間の母語習得のメカニズムの解明のためには,研究の指針となるような学習の数理モデルの確立が欠かせない。この観点から,母語習得のモデルとして一定の説得力を持つ学習の枠組みのもとで,どれだけ広い文脈自由言語の部分クラスが学習可能になるのかを調べることは,非常に重要な課題である。本研究は,正例と所属性質問からの極限同定の枠組みのもとで,従来の分布学習のアルゴリズムで目標言語とすることができる文脈自由言語のクラスを飛躍的に拡大することに成功した。

Report

(7 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (11 results)

All 2023 2021 2019 2018 Other

All Int'l Joint Research (2 results) Journal Article (4 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 4 results,  Open Access: 3 results) Presentation (5 results) (of which Int'l Joint Research: 5 results,  Invited: 1 results)

  • [Int'l Joint Research] University College London(英国)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] University College London(英国)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Extending Distributional Learning from Positive Data and Membership Queries2023

    • Author(s)
      Makoto Kanazawa and Ryo Yoshinaka
    • Journal Title

      Proceedings of Machine Learning Research

      Volume: -

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Learning Context-Free Grammars from Positive Data and Membership Queries2023

    • Author(s)
      Makoto Kanazawa
    • Journal Title

      Lecture Notes in Computer Science

      Volume: -

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A Hierarchy of Context-Free Languages Learnable from Positive Data and Membership Queries2021

    • Author(s)
      Makoto Kanazawa and Ryo Yoshinaka
    • Journal Title

      Proceedings of Machine Learning Research

      Volume: 153 Pages: 18-31

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Decision problems for Clark-congruential languages2019

    • Author(s)
      Makoto Kanazawa and Tobias Kappe
    • Journal Title

      Proceedings of Machine Learning Research

      Volume: 93 Pages: 3-16

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Learning Context-Free Grammars from Positive Data and Membership Queries2023

    • Author(s)
      Makoto Kanazawa
    • Organizer
      WoLLIC 2023, 29th Workshop on Logic, Language, Information and Computation
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Extending Distributional Learning from Positive Data and Membership Queries2023

    • Author(s)
      Makoto Kanazawa and Ryo Yoshinaka
    • Organizer
      ICGI 2023, 16th International Conference on Grammatical Inference
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A Hierarchy of Context-Free Languages Learnable from Positive Data and Membership Queries2021

    • Author(s)
      Makoto Kanazawa
    • Organizer
      The 15th International Conference on Grammatical Inference
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Decision problems for Clark-congruential languages2018

    • Author(s)
      Makoto Kanazawa and Tobias Kappe
    • Organizer
      The 14th International Conference on Grammatical Inference
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Decision problems for Clark-congruential languages2018

    • Author(s)
      Makoto Kanazawa and Tobias Kappe
    • Organizer
      LearnAut 2018
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2017-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi