Project/Area Number |
17K00257
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Perceptual information processing
|
Research Institution | Hiroshima Institute of Technology |
Principal Investigator |
Ohtani Kozo 広島工業大学, 情報学部, 教授 (40351978)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 半透明物体 / 3次元形状計測 / 表面下散乱 / 光線追跡 / スポット光 / スポット光投影法 / 三次元形状計測 / 光線追跡法 / 計測工学 / 画像 / 形状計測 |
Outline of Final Research Achievements |
In this study, we simulated the subsurface scattering of translucent objects using the ray tracing method, and examined a shape-measurement method for three-dimensional translucent objects by the spotlight projection method using the simulation results. We modeled colloidal particles inside a translucent object and simulated the behavior of subsurface scattering using the ray tracing method. We found it was possible to visualize the behavior of light scattering inside the object. Moreover, parameters related to colloidal particles were estimated by a method focusing on the Tyndall phenomenon of a translucent object, and the correlation between the position of light incident on the translucent object and that of emitted light and statistically analyzed. In the future, An optical 3-D shape measurement method for translucent object will be established using the results.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では,半透明物体の3次元形状を高精度に計測する新たな光学的計測法の開発に取り組んだ.半透明物体に投影した光は内部で散乱し(表面下散乱),入射した位置とは異なる位置から出射する.そのため,半透明物体の光学的3次元計測は困難な問題の一つとなっていた.開発した計測法では,まず,半透明物体の光学特性をモデル化し,表面下散乱を光線追跡法でシミュレートする.そして,入射光位置と出射光位置の相関を統計的に解析し,実測した3次元計測データを補正するものである.いくつかの課題は残ったが,本手法が確立すれば,あらゆる光学特性をもつ物体へ適用可能な3Dスキャナを構築することができ,工学的価値は非常に大きい.
|