Development and application of a super high-precision 3-D analytical method of an electromagnetic wave considering the edge property of the conductor
Project/Area Number |
17K05150
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Computational science
|
Research Institution | National Institute of Technology(KOSEN),Numazu College |
Principal Investigator |
Serizawa Hirohide 沼津工業高等専門学校, 制御情報工学科, 教授 (70226687)
|
Project Period (FY) |
2017-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
|
Keywords | 小林ポテンシャル / 厳密解 / 方形開口 / 電磁波回折 / エッジ特性 / 数値計算 / 異種媒質 / 二重無限積分 / 有限要素法 / 電磁波放射 / 数理工学 / 計算物理 / 電磁波工学 |
Outline of Final Research Achievements |
We developed a highly accurate analytical method for the problems of EM wave scattering and radiation from rectangular objects, which include the numerical technique for calculating the double infinite integral and the double infinite series associated with the problems with the desired accuracy, and we obtained the exact solutions for various rectangular objects such as a rectangular aperture in the screen, a flanged waveguide, and multiple apertures. By applying them, we made the exact understanding of the EM phenomenon, and quantitatively evaluated the calculation accuracy of the general-purpose numerical solution method (finite element method). In addition, we investigated the effect of incorporating edge properties on the convergence of the solutions.
|
Academic Significance and Societal Importance of the Research Achievements |
開発された三次元厳密解法は小林ポテンシャル法(KP法)を応用したものであり、特に従来手法が苦手とする共振構造や微小開口を含む問題で威力を発揮する。種々の規範問題に対して得られた厳密解は、エッジ特性が組み込まれているため少ない項数で高精度な数値結果を得ることができ、汎用的数値解法の精度を正しく評価するための基準解として使用できる。さらに、正確な電磁現象の把握が可能であるため、研究成果はメタマテリアル等の電気的人工媒質や高性能アンテナ・新センサプローブ等の開発に役立てることができる。
|
Report
(6 results)
Research Products
(22 results)