• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Knots, Floer homology, and combinatorics

Research Project

Project/Area Number 17K05244
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionTokyo Institute of Technology

Principal Investigator

Kalman Tamas  東京工業大学, 理学院, 准教授 (00534041)

Project Period (FY) 2017-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywordslow-dimensional topology / algebraic combinatorics / knots / directed links / directed graphs / polymatroids / polynomial invariants / quantum knot invariant / 代数的組み合わせ論 / 接触構造 / ポリマトロイド / トポロジー / 結び目理論 / 低次元トポロジー / ハイパーグラフ / 結び目不変量 / Floer homology / combinatorics
Outline of Final Research Achievements

I explored a set of ideas at the intersection of low-dimensional topology and algebraic combinatorics. On the topology side, a surprising connection between Floer theory and the Homfly polynomial was strengthened by the introduction of tight contact structures into the picture. In combinatorics, my previous theory of interior polynomials was extended in two separate directions. In the context of hypergraphs and polymatroids, the two polynomials were unified in a common two-variable extension, which is also a far-reaching generalization. The interior polynomial of an arbitrary directed graph was introduced and some of its attractive properties were discovered. Here as a special case, any undirected graph gives rise to a bidirected graph, and the interior polynomial of the latter is nothing but the h*-polynomial of the so-called symmetric edge polytope. I developed an algorithm to compute these polynomials based on an arbitrary ribbon structure of the graph.

Academic Significance and Societal Importance of the Research Achievements

BernardiとPostnikovとの共同研究であるTutte多項式のまだ最も一般的なバージョンに関する結果は、文献の基本的な部分になる可能性がある。トートメレシュと共に開発した対称辺多面体のh*多項式(ひいてはh*(1)、体積)を計算するアルゴリズムは、倉本モデルとの関連から、数学以外の分野でも興味を持たれるはずである。

Report

(7 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (48 results)

All 2023 2022 2021 2020 2019 2018 2017 Other

All Int'l Joint Research (20 results) Journal Article (12 results) (of which Int'l Joint Research: 12 results,  Peer Reviewed: 12 results) Presentation (16 results) (of which Int'l Joint Research: 13 results,  Invited: 16 results)

  • [Int'l Joint Research] エトヴォス大学(ハンガリー)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] ブランダイス大学/MIT(米国)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] 仁川国立大学/慶北大学校(韓国)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] エトヴォス大学(ハンガリー)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] ブランダイス大学/MIT(米国)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] 仁川国立大学/慶北大学校(韓国)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] エトヴォシュ大学(ハンガリー)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Kyungpook National University/Incheon National University(韓国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Binghamton University/Brandeis University/MIT(米国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] MIT/ブランダイス大学/ジョージア工科大学(米国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] 韓国科学技術院/浦項工科大学校(韓国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] エトヴォシュ・ローランド大学(ハンガリー)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] モナシュ大学(オーストラリア)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] エトヴォシュ ローランド大学(ハンガリー)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] マサチューセッツ工科大学/ハーバード大学(米国)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] ナント大学(フランス)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] ポリテック大学(韓国)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] Eotvos University(ハンガリー)

    • Related Report
      2017 Research-status Report
  • [Int'l Joint Research] MIT(米国)

    • Related Report
      2017 Research-status Report
  • [Int'l Joint Research] Monash University(オーストラリア)

    • Related Report
      2017 Research-status Report
  • [Journal Article] The sandpile group of a trinity and a canonical definition for the planar Bernardi action2022

    • Author(s)
      Tamas Kalman, Seunghun Lee, and Lilla Tothmeresz
    • Journal Title

      Combinatorica

      Volume: 42 Pages: 1283-1316

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Ruling invariants for Legendrian graphs2022

    • Author(s)
      Byung Hee An, Youngjin Bae, and Tamas Kalman
    • Journal Title

      Journal of Symplectic Geometry

      Volume: 20 Pages: 49-97

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Root polytopes and Jaeger-type dissections for directed graphs2022

    • Author(s)
      Tamas Kalman and Lilla Tothmeresz
    • Journal Title

      Mathematika

      Volume: 68 Pages: 1176-1220

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Universal Tutte polynomial2022

    • Author(s)
      Olivier Bernardi, Tamas Kalman, and Alexander Postnikov
    • Journal Title

      Advances in Mathematics

      Volume: 402 Pages: 108355-108355

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Universal Tutte polynomial2021

    • Author(s)
      Olivier Bernardi, Tamas Kalman and Alexander Postnikov
    • Journal Title

      Advances in Mathematics

      Volume: -

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] The sandpile group of a trinity and a canonical definition for the planar Bernardi action2021

    • Author(s)
      Tamas Kalman, Seunghun Lee and Lilla Tothmeresz
    • Journal Title

      Combinatorica

      Volume: -

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Ruling invariants for Legendrian graphs2021

    • Author(s)
      Byung Hee An, Youngjin Bae and Tamas Kalman
    • Journal Title

      Journal of Symplectic Geometry

      Volume: -

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Hypergraph polynomials and the Bernardi process2020

    • Author(s)
      Tamas Kalman, Lilla Tothmeresz
    • Journal Title

      Algebraic Combinatorics

      Volume: 3 Pages: 1099-1139

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Ruling invariants for Legendrian graphs2020

    • Author(s)
      Byung Hee An, Youngjin Bae, Tamas Kalman
    • Journal Title

      Symplectic Geometry

      Volume: -

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Tight contact structures on Seifert surface complements2020

    • Author(s)
      Tamas Kalman and Daniel V. Matthews
    • Journal Title

      Journal of Topology

      Volume: 13 Pages: 730-776

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Root polytopes, Tutte polynomials, and a duality theorem for bipartite2017

    • Author(s)
      Tamas Kalman and Alexander Postnikov
    • Journal Title

      Proceedings of the London Mathematical Society

      Volume: 114 Issue: 3 Pages: 561-588

    • DOI

      10.1112/plms.12015

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Root polytopes, parking functions, and the HOMFLY polynomial2017

    • Author(s)
      Kalman, Tamas and Murakami, Hitoshi
    • Journal Title

      Quantum Topology

      Volume: 8 Issue: 2 Pages: 205-248

    • DOI

      10.4171/qt/89

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] The unreasonable effectiveness of ribbon structures, at the conference on Characteristic polynomials of hyperplane arrangements and Ehrhart polynomials of convex polytopes2023

    • Author(s)
      Tamas Kalman
    • Organizer
      The Conference on Characteristic polynomials of hyperplane arrangements and Ehrhart polynomials of convex polytopes
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Tight contact structures on Seifert surface complements2020

    • Author(s)
      Tamas KALMAN
    • Organizer
      Knot Theory on Okinawa mini-symposium
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] The Homfly polynomial, Floer homology, and combinatorics2019

    • Author(s)
      Tamas KALMAN
    • Organizer
      日本数学会秋季大会
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Tight contact structures on Seifert surface complements2019

    • Author(s)
      Tamas KALMAN
    • Organizer
      ボストンカレッジ
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Floer homology and the HOMFLYPT polynomial2019

    • Author(s)
      Tamas KALMAN
    • Organizer
      MIT 幾何学セミナー
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Hypergraph polynomials and the Bernardi process2019

    • Author(s)
      Tamas KALMAN
    • Organizer
      アメリカ数学会Spring Central and Western Joint Sectional Meeting
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Tight contact structures on Seifert surface complements2019

    • Author(s)
      Tamas KALMAN
    • Organizer
      アメリカ数学会Spring Central and Western Joint Sectional Meeting
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Tight contact structures on Seifert surface complements2018

    • Author(s)
      Tamas KALMAN
    • Organizer
      東京大学
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Tight contact structures on Seifert surface complements2018

    • Author(s)
      Tamas KALMAN
    • Organizer
      ナント大学幾何学セミナー
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Hypergraph polynomials and the Bernardi process2018

    • Author(s)
      Tamas KALMAN
    • Organizer
      MIT 幾何学セミナー
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Ribbon structures and dissections of root polytopes2018

    • Author(s)
      Tamas KALMAN
    • Organizer
      ブランダイス大学 幾何学セミナー
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Ribbon structures and dissections of root polytopes2018

    • Author(s)
      Tamas KALMAN
    • Organizer
      ブラウン大学 幾何学セミナー
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Tight contact structures on Seifert surface complements and knot invariants2018

    • Author(s)
      Tamas KALMAN
    • Organizer
      ブランダイス大学 幾何学セミナー
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] The Homfly polynomial and Floer homology2017

    • Author(s)
      Tamas Kalman
    • Organizer
      Twelfth East Asian School of Knots and Related Topics
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] The Tutte polynomial, hypergraphs, and duality2017

    • Author(s)
      Tamas Kalman
    • Organizer
      Monash University
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] The Homfly polynomial, Floer homology, and contact structures2017

    • Author(s)
      Tamas Kalman
    • Organizer
      Center for Geometry and Physics Seminar
    • Related Report
      2017 Research-status Report
    • Invited

URL: 

Published: 2017-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi