• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The Approximation Theorem on Special Continuous Mappings and its Application to Topology, Graph Theory, and Applied Mathematics.

Research Project

Project/Area Number 17K05251
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionShimane University

Principal Investigator

Matsuhashi Eiichi  島根大学, 学術研究院理工学系, 准教授 (60558518)

Project Period (FY) 2017-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
KeywordsWhitney preserving map / graph-like continuum / inverse limit / decomposable continuum / indecomposable continuum / Whitneyの逆性質 / 射影極限 / D**-continuum / aposyndetic / Wilder-continuum / semiaposyndetic / Janiszewski continuum / D-continuum / Inverse limit / Chogoshvili-Pontrjagin予想 / superdendrite / Eulerian path / 複雑な連続写像 / 無限次元 / ペアノ連続体
Outline of Final Research Achievements

We proved the equivalence between weakly Whitney preserving maps, which map continua to graph-like continua, and arc-wise increasing maps, serving as a generalization of Eulerian paths. Additionally, We demonstrated that among surjective continuous mappings from closed intervals to n-dimensional cubes (space-filling curves), almost all such mappings are weakly Whitney preserving maps in a topological sense. Moreover, We strengthened a well-known counterexample to the Chogoshvili-Pontrjagin claim. Furthermore, We conducted research on inverse limits with uppee semi-continuous set-valued functions, deriving sufficient conditions for inverse limits to become indecomposable continua.

Academic Significance and Societal Importance of the Research Achievements

連続体間の特殊な連続写像であるweakly Whitney preserving mapがgraph-like連続体におけるEulerlian pathと等価であることを証明したことは、トポロジーとグラフ理論の境界領域の開拓への寄与であるといえる。また、昨今の射影極限の理論において、上半連続な集合値関数を結合関数とする射影極限が分解不可能になるための十分条件は、そのほとんどの場合が因子空間が閉区間の場合において与えられているが、本研究では因子空間を一般の連続体としており、本分野において大きな前進となっている。

Report

(8 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (19 results)

All 2024 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (4 results) Journal Article (7 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 6 results) Presentation (8 results) (of which Int'l Joint Research: 2 results,  Invited: 1 results)

  • [Int'l Joint Research] ピッツバーグ大学グリーンズバーグ校(米国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] ピッツバーグ大学グリーンズバーグ校(米国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] ピッツバーグ大学グリーンズバーグ校(米国)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] ピッツバーグ大学グリーンズバーグ校(米国)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Some theorems on decomposable continua2024

    • Author(s)
      Imamura Hayato、Matsuhashi Eiichi、Oshima Yoshiyuki
    • Journal Title

      Topology and its Applications

      Volume: 343 Pages: 108794-108794

    • DOI

      10.1016/j.topol.2023.108794

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Some theorems on colocally connected continua2023

    • Author(s)
      Matsuhashi Eiichi, Oshima Yoshiyuki
    • Journal Title

      Topology Proceedings

      Volume: 62 Pages: 171-177

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] The Chogoshvili-Pontrjagin Claim and dendrites2022

    • Author(s)
      Matsuhashi Eiichi、Oshima Yoshiyuki、Tomie Masaya
    • Journal Title

      Topology and its Applications

      Volume: 311 Pages: 107961-107961

    • DOI

      10.1016/j.topol.2021.107961

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Full projection propertyについて2022

    • Author(s)
      松橋英市、山中崇央
    • Journal Title

      数理解析研究所講究録

      Volume: 2209

    • Related Report
      2021 Research-status Report
  • [Journal Article] D-continua, D*-continua, and Wilder continua2020

    • Author(s)
      Espinoza Benjamin、Matsuhashi Eiichi
    • Journal Title

      Topology and its Applications

      Volume: 285 Pages: 107393-107393

    • DOI

      10.1016/j.topol.2020.107393

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Inverse Limits with Upper Semi-continuous Bonding Functions Whose Inverse Functions are Continuous2020

    • Author(s)
      Matsuhashi Eiichi、Yamanaka Takahiro
    • Journal Title

      Mediterranean Journal of Mathematics

      Volume: 17 Issue: 3

    • DOI

      10.1007/s00009-020-01525-3

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Weakly Whitney preserving maps2019

    • Author(s)
      Espinoza Benjamin、Matsuhashi Eiichi
    • Journal Title

      Topology and its Applications

      Volume: 262 Pages: 90-108

    • DOI

      10.1016/j.topol.2019.05.010

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Some recent results on decomposable continua2024

    • Author(s)
      Matsuhashi Eiichi
    • Organizer
      57th Spring Topology and Dynamics Conference
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Some theorems on decomposable continua and related topics2023

    • Author(s)
      Matsuhashi Eiichi
    • Organizer
      Iberoamerican and Pan Pacific International Conference on Topology and its Applications
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Full Projection Property について2021

    • Author(s)
      松橋英市、山中崇央
    • Organizer
      一般位相幾何学の動向と諸分野との連携
    • Related Report
      2021 Research-status Report
  • [Presentation] D-continua, D*-continua and Wilder continua2021

    • Author(s)
      松橋英市、Benjamin Espinoza
    • Organizer
      ジェネラルトポロジーシンポジウム
    • Related Report
      2021 Research-status Report
  • [Presentation] D-continua and related topics2021

    • Author(s)
      Eiichi Matsuhashi
    • Organizer
      Pitt Topology Seminar
    • Related Report
      2021 Research-status Report
  • [Presentation] Chogoshvili-Pontrjagin の主張について2020

    • Author(s)
      大島慶之*, 松橋英市, 冨江雅也 (*が発表者を表す)
    • Organizer
      一般位相幾何学とその関連分野の進展
    • Related Report
      2020 Research-status Report
  • [Presentation] D-continua and related topics2019

    • Author(s)
      Benjamin Espinoza and Eiichi Matsuhashi
    • Organizer
      ジェネラルトポロジーシンポジウム
    • Related Report
      2019 Research-status Report
  • [Presentation] Inverse limits with upper semi-continuous bonding functions whose inverse functions are continuous2019

    • Author(s)
      松橋英市、山中崇央
    • Organizer
      ジェネラルトポロジーシンポジウム
    • Related Report
      2019 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi