• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Identification problems in stochastic control theory

Research Project

Project/Area Number 17K05359
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Foundations of mathematics/Applied mathematics
Research InstitutionTokyo Institute of Technology

Principal Investigator

Nakano Yumiharu  東京工業大学, 情報理工学院, 准教授 (00452409)

Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords部分観測確率制御 / 逆問題 / 確率制御問題 / ハミルトン・ヤコビ・ベルマン方程式 / 再生核補間 / 部分観測確率制御問題 / Zakai方程式 / カーネル選点法 / 確率制御 / 応用数学 / 確率論
Outline of Final Research Achievements

For the inverse problem in stochastic optimal control theory, we have clarified the sufficient conditions for well-posedness in the proposed framework. The numerical solutions are also discussed, and it is confirmed numerically that the penalty parameters are reproduced with high accuracy for some specific problems.
For the numerical analysis of the partial observation stochastic control problem, based on the discussion of the convergence of the kernel-based method for the Zakai equation, which characterizes the partial observation problem for diffusion processes, the original problem is approximated by an finite-dimensional complete observation stochastic control problem and the error evaluation is given. This means that we give a method to approximate the infinite-dimensional Hamilton-Jacobi-Bellman equation corresponding to the partial observation stochastic control problem by that of finite dimension.

Academic Significance and Societal Importance of the Research Achievements

これまで,確率制御の一般的枠組みにおいて逆問題はほとんど研究されておらず,また,決定論的制御においても逆問題の適切性を議論した論文は無いため,本成果は,最適制御の逆問題という,長年重要視されてきた問題に対し理論的基盤の一つを与えるものと位置付けられる.さらに,部分観測確率制御問題に対して実装可能な数値解法を初めて提供した.
本研究の貢献は,非線形確率システム同定・制御の実用化に必要な部分の数値解析の端緒として位置付けられ,これを基に広範囲の応用分野の発展が期待できる.

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (7 results)

All 2020 2019 2018 2016

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Acknowledgement Compliant: 1 results) Presentation (4 results) (of which Int'l Joint Research: 2 results,  Invited: 4 results)

  • [Journal Article] Kernel-based collocation methods for Heath?Jarrow?Morton models with Musiela parametrization2020

    • Author(s)
      Kinoshita Yuki、Nakano Yumiharu
    • Journal Title

      Stochastics

      Volume: - Issue: 6 Pages: 1-24

    • DOI

      10.1080/17442508.2020.1817024

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Kernel-based collocation methods for Zakai equations2019

    • Author(s)
      Y. Nakano
    • Journal Title

      Stochastic and Partial Differential Equations: Analysis and Computation

      Volume: Online First Issue: 3 Pages: 476-494

    • DOI

      10.1007/s40072-019-00132-y

    • NAID

      120006582632

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Convergence of meshfree collocation methods for fully nonlinear parabolic equations2016

    • Author(s)
      Yumiharu Nakano
    • Journal Title

      Numerische Mathematik

      Volume: - Issue: 3 Pages: 703-723

    • DOI

      10.1007/s00211-016-0852-8

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] Convergent collocation methods for Hamilton-Jacobi-Bellman equations2018

    • Author(s)
      Y. Nakano
    • Organizer
      The 23rd International Symposium on Mathematical Theory of Networks and Systems
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Convergent collocation methods for fully nonlinear parabolic equations2018

    • Author(s)
      Y. Nakano
    • Organizer
      CJK Conference on Numerical Mathematics 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 非線形放物型PDEに対するカーネル選点法の収束について2018

    • Author(s)
      中野張
    • Organizer
      次世代の科学技術を支える数値解析学の基盤整備と応用展開
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 線形・非線形放物型偏微分方程式に対するメッシュフリー選点法2018

    • Author(s)
      中野張
    • Organizer
      東大数値解析セミナー
    • Related Report
      2017 Research-status Report
    • Invited

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi