Research on the quantum nature of black hole via superstring theory and gauge theory
Project/Area Number |
17K05405
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Particle/Nuclear/Cosmic ray/Astro physics
|
Research Institution | Ibaraki University |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 超弦理論 / ブラックホール / インフレーション宇宙 / M理論 / インフレーション / 量子重力 / 行列模型 / 素粒子論 / ゲージ理論 |
Outline of Final Research Achievements |
There are 4 forces in nature, that is, electric magnetic, weak, strong and gravity forces. Among these the quantum nature of the gravity is unknown so far. In order to solve this problem, it is promising to consider superstring theory whose fundamental object is string in Planck scale. In our research we consider effective action of the superstring theory which takes account of the quantum effect of the string. By using this effective action, we investigate nature of black hole and inflationary expansion of the early universe. On the interior of the black hole we assumed that there exists a bound state of strings and D0-branes (charged particles) and showed that this bound state reproduces the same gravity potential as the black hole for an faraway observer. On the early universe we constructed a solution of the spacetime which expands rapidly and evaluated cosmological perturbations around this solution.
|
Academic Significance and Societal Importance of the Research Achievements |
理論物理学における大きな謎は、重力の量子化である。重力の量子論は未完成であるが、ブラックホールの近傍や内部構造を解き明かすうえで重要であり、宇宙初期の高温高密度状態を理論的に解明するうえでも必要不可欠である。現在宇宙観測の技術進歩により、ブラックホールや宇宙初期の密度揺らぎが精度よく測定できるようになってきた。これらの観測結果をより正確に理解するためにも、重力の量子論を構築することは喫緊の課題である。
|
Report
(6 results)
Research Products
(16 results)