Development of Simulator for High Efficient Chemical Mechanical Polishing of Hard-to-Process Materials by Computational Method
Project/Area Number |
17K06110
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Design engineering/Machine functional elements/Tribology
|
Research Institution | Tohoku University |
Principal Investigator |
Ozawa Nobuki 東北大学, 金属材料研究所, 助教 (60437366)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2017: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 分子動力学法 / 化学機械研磨 / 難加工材料 / ナノバブル / マルチフィジックス現象 / シミュレーション / 反応力場 / 計算科学 / 第一原理計算 / メカノケミカル反応 / 量子化学 |
Outline of Final Research Achievements |
A nano-bubble is recently utilezed for highly efficient chemical mechanical polishing (CMP) of hard-to-process materials such as SiC and AlN substrates. Collapse of nano bubble by shock wave in solvent generates a jet flow at a nano scale, which oxidizes the substrtes to be easily polished during CMP. In this study, the oxidation dynamics of the Si(001) and AlN(0001) substrates induced by nano bubble collapse was investigated by reactive molecuar dynamics simulstion, which is possible to deal chemical reactions. It is revealed that the impact of the jet flows enhances the oxidation of the substrates by water molecules. Moreover, it is suggested that there is the proper value of size and the number of a nano bubble, which satisfies amount of the oxidation and homogeneity of the oxide layer for a highly planarized substrate after polishing.
|
Academic Significance and Societal Importance of the Research Achievements |
パワー半導体素子材料の成長基板に用いられるAlN及びSiC基板は高硬度と高い化学安定性を有する難加工材料であり、少ない欠陥且つ高効率に研磨する手法の開発が強く求められている。研磨には化学機械研磨という手法が用いられており、スラリーにナノバブルを導入することで、研磨速度及び平坦度が向上することが実験的に報告されている。そこで、さらなる化学機械研磨の高効率化には、ナノバブルが研磨速度を向上させるメカニズムを解明する必要がある。本研究では、さらなる難加工材料の加工速度と高品質化に貢献するため、化学反応を取り扱い可能な反応分子動力学法に基づき、ナノバブルが研磨速度を向上させるメカニズムを検討した。
|
Report
(4 results)
Research Products
(16 results)