Numerical Method for the Unsteady Multiphase Flow and the Collapsing Behavior of Cavitation Bubble
Project/Area Number |
17K06164
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Fluid engineering
|
Research Institution | University of Miyazaki |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 流体工学 / 数値流体力学 / 気液混相流 / キャビテーション |
Outline of Final Research Achievements |
Preconditioned numerical method of compressible flow is advantageous in analyzing the gas-liquid multiphase flow with both compressible and incompressible flow nature. However, there are some difficulties to make clear the unsteady behavior because the time derivative term in the conventional preconditioning method is corrected. In this study, a time consistent numerical method for unsteady multiphase flow was developed. In this method, time and spatial accuracy, numerical stability and convergency are improved by proposing a method which the matrix used for precondition does not affect the unsteady term and can fully exert its role in the computation of the advection term. Through some numerical simulations for steady and unsteady gas-liquid multiphase flows, the validity of the developed method was verified, and the effectiveness and applicability to the problems with strong unsteadiness such as cavitating flow were confirmed.
|
Academic Significance and Societal Importance of the Research Achievements |
キャビテーション気泡の崩壊挙動に関する研究やその崩壊圧、衝撃波による損傷の防止および有効活用に関する研究はその重要性のため精力的に行われている。しかし、数値的研究においては非定常計算の問題でその研究の推進に限界があった。本研究により、これらの問題が解決できる時間に対し整合性を保つ数値解法を提案することで、現状では捉えきれない気泡崩壊の詳細な挙動や諸非定常現象が良い精度で解析可能となり、また、キャビテーション気泡の特性を考慮すべき高速液体機械・衝撃波活用機器の先端設計・開発に大きく寄与すると期待する。
|
Report
(5 results)
Research Products
(24 results)