Project/Area Number |
17K06171
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Fluid engineering
|
Research Institution | Aichi Institute of Technology |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
松田 佑 早稲田大学, 理工学術院, 准教授 (20402513)
森 竜雄 愛知工業大学, 工学部, 教授 (40230073)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | 感圧塗料 / 発光電気化学セル / 高輝度 / イオン液体 / LEC / PSP / 圧力計測 / 高速度計測 / 電気化学発光セル / 高輝度化 / 高精度 / 流体工学 / リモートセンシング / 航空宇宙工学 |
Outline of Final Research Achievements |
Pressure-Sensitive Paint is a new technique to optically measure pressure distribution on a model surface with a CCD/CMOS camera. In this study, we have developed an electrically excited high-luminescence PSP based on the principle of luminescent electrochemical cells (LECs) to measure fast fluid phenomena with high accuracy in a very short exposure time of 1-100 µs. First, the preparation method of LECs using the pressure-sensitive dye PtTFPP was studied, and the preparation conditions including the preparation materials, their proportions and film thicknesses were found. The pressure sensitivity of the LEC-PSP was confirmed to be comparable to that of the conventional spray-coated PSP. The LEC-PSP showed 36 times higher intensity than the conventional one, which can significantly improve the signal-to-noise ratio of the acquired images and the associated measurement accuracy.
|
Academic Significance and Societal Importance of the Research Achievements |
感圧塗料(PSP)の時間応答性を向上させる研究の進展に伴い,より高速な流体現象の計測が行われるようになってきた.しかし高速度カメラの露光時間が短くなればなるほど,計測画像の光量は減少しS/Nが低下してしまい,計測精度向上のボトルネックとなっていた. LECに基づく電気励起式のPSPを開発し大幅な軌道向上に成功したことで,高速流体現象の計測における計測精度向上ができることが示された.また,自己発光できるため励起光照射が困難な閉所などの計測対象にも適用できるようになるなど,将来的な適用範囲拡大が見込まれる.
|