Project/Area Number |
17K06365
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Electronic materials/Electric materials
|
Research Institution | National Institute for Materials Science |
Principal Investigator |
IROKAWA Yoshihiro 国立研究開発法人物質・材料研究機構, 機能性材料研究拠点, 主幹研究員 (90394832)
|
Project Period (FY) |
2017-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
|
Keywords | 水素 / 窒化物半導体 / 界面 / 相互作用 / 窒化ガリウム / MIS型水素センサ / MIS界面 / 中間層 / 自然酸化膜 / 準安定酸化ガリウム / ナノシート / センサ / 半導体デバイス |
Outline of Final Research Achievements |
Recently, hydrogen attracts much attention as a clean energy source. However, hydrogen has no colour and no smell, and it is combustible and explosible in air; therefore, much attention should be paid when we handle it. For those reasons, from a viewpoint of safety, hydrogen sensing technology plays a key role in hydrogen-based society; a wide variety of hydrogen sensors is required. In this research, we revealed that native oxide layers on GaN are crystalline gallium oxide nano-sheets and that these native oxide layers play a critical role in sensing hydrogen.
|
Academic Significance and Societal Importance of the Research Achievements |
研究成果の学術的意義として、以下が挙げられる。半導体デバイスの信頼性の観点から、雰囲気中の水素が半導体デバイスの特性を変化させることは古くから知られていたが、そのメカニズムは正確にはわかっていなかった。今回の成果は、そのメカニズムに関して、新たな提案を行うものである。社会的意義として、半導体デバイスと水素の相互作用機構が明らかになり、今後、様々な仕様の水素センサ実現が期待でされる。
|