Project/Area Number |
17K06825
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Composite materials/Surface and interface engineering
|
Research Institution | Ichinoseki National College of Technology |
Principal Investigator |
Murakami Akira 一関工業高等専門学校, その他部局等, 准教授 (30361033)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 超電導 / 単結晶バルク / 機械的特性 / 破壊強度 / 曲げ試験 / 引張試験 / フラクトグラフィ / バルク超電導体 / 希土類系銅酸化物 / ニホウ化マグネシウム / バルク材料 / 単結晶 / 機械特性 / 複合材料・物性 |
Outline of Final Research Achievements |
Mechanical properties of REBaCuO, RE denotes rare-earth elements, single-grain supercondunting bulk materials and those of magnesium diboride superconducting bulk materials have been investigated in association with their fabrication processes, microstructures and fracture mechanisms. Conventional REBaCuO bulk materials fabricated by melt-processing in air contain pores that cause degradation of mechanical properties. Porosity of REBaCuO bulk materials has been decreased and tensile strength has been improved with increasing oxygen pressure in the melt-processing. Magnesium diboride bulk materials are commonly fabricated by sintering at ambient pressure. Mechanical properties of such magnesium diboride bulk materials are inferior to those of REBaCuO bulk materials, that is mainly due to the low packing ratio. In this study, packing ratio and mechanical properties of magnesium diboride bulk materials have been improved by using spark plasma sintering for thier fabrication process.
|
Academic Significance and Societal Importance of the Research Achievements |
超電導バルク材料を用いた応用機器の高性能化にとって,バルクの大型化は有効な手段の一つとされる.超電導バルク材料の応用において,バルクには電磁力や熱応力が作用し,それらはバルクの大型化に伴い増大する傾向にある.そのため,超電導バルク材料を用いた応用機器の高性能化にとって,電磁力に耐えるバルクであることが重要である.超電導バルクは,その作製プロセスと関係して内部に気孔や空隙を含み,それらは破壊の原因となり得る.作製プロセスの改善により気孔や空隙を排除したバルクの機械的特性と,気孔を含まない場合の破壊の原因を明らかにした本研究の成果は,バルクの開発や応用に役立つものである.
|