Development of high capacity and low cost hydrogen storage materials using self-organization induced by hydrogenation
Project/Area Number |
17K06853
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Structural/Functional materials
|
Research Institution | National Institute of Advanced Industrial Science and Technology |
Principal Investigator |
Asano Kohta 国立研究開発法人産業技術総合研究所, エネルギー・環境領域, 主任研究員 (30415640)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2017: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
|
Keywords | エネルギー材料 / 水素貯蔵材料 / 構造材料 / 非平衡合金 / クラスター構造 / 構造解析 / Mg水素化物 / 金属水素化物 / 固体核磁気共鳴 / 水素エネルギー |
Outline of Final Research Achievements |
Mg based hydrides are attractive hydrogen energy materials because of their relative high gravimetric and volumetric hydrogen storage capacities combined with low material costs. However, most of them are too stable to release the hydrogen under moderate conditions. Here we synthesize the hydride of Mg2FexSi1-x which consists of Mg2FeH6 and Mg2Si with the same cubic structure. For Si-rich hydrides (x < 0.5), Mg2FeH6 domains are nanometer-sized and embedded in a Mg2Si matrix. This synthesized metallographic structure leads to a distortion of the Mg2FeH6 lattice, resulting in the thermal destabilization. Our results indicate that nanometer-sized Mg based transition metal hydrides can be formed by the hydrogenation of nonequilibrium Mg-Fe-Si composites. In this way, the thermodynamics of hydrogen absorption and desorption can be tuned which allows for the development of light-weight and inexpensive hydrogen storage materials.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、再生可能エネルギー起源のエネルギーシステム高効率化を目指して、高水素貯蔵密度かつ低コストのMgを水素貯蔵材料として利用すべく水素化物合成研究を実施した。Mgの主課題は水素化物の不安定化を図り、水素吸蔵放出反応温度を低下させることである。高い水素貯蔵量および低い原料金属コストを実現するため、Mg, FeおよびSiから成る新たな水素化物の合成に成功し、各種構造解析により特殊なナノメートル構造が水素とMgの反応温度低下に結びつくことが実験的に示された。本研究により、水素エネルギーの広い社会普及に向けた低コスト水素貯蔵材料の開発指針が得られたものと期待できる。
|
Report
(4 results)
Research Products
(12 results)
-
-
-
-
-
-
-
[Presentation] Metallurgical Synthesis of Mg2FexSi1-x Hydride: Destabilization of Mg2FeH6 Nanoconfined in Templated Mg2Si2019
Author(s)
Kohta Asano, Hyunjeong Kim, Kouji Sakaki, Yumiko Nakamura, Yongming Wang, Shigehito Isobe, Masaaki Doi, Asaya Fujita, Naoyuki Maejima, Akihiko Machida, Tetsu Watanuki, Ruud J. Westerwaal, Herman Schreuders, Bernard Dam
Organizer
Gordon Research Conference Hydrogen-Metal Systems
Related Report
Int'l Joint Research
-
-
-
[Presentation] Mg2FexSi1-x-Hの合成と構造2018
Author(s)
浅野耕太, Hyunjeong Kim, 榊浩司, 中村優美子, 王永明, 礒部繁人, 土井正晶, 藤田麻哉, 前島尚行, 町田晃彦, 綿貫徹, Ruud J. Westerwaal, Herman Schreuders, Bernard Dam
Organizer
「水素化物に関わる次世代学術・応用展開研究会」第5回研究会
Related Report
-
-