• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Extension of eigenvectir spatial filtering approaches for large and diverse spatiotemporal datasets

Research Project

Project/Area Number 17K12974
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Geography
Research InstitutionThe Institute of Statistical Mathematics

Principal Investigator

Murakami Daisuke  統計数理研究所, データ科学研究系, 助教 (20738249)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords空間回帰 / 空間統計 / 大規模データ / 地理情報科学 / 大規模空間データ / 空間可変パラメータモデル / spmoran / 高速化 / 空間回帰モデリング / 空間統計学 / 固有ベクトル空間フィルタリング / 計算負荷
Outline of Final Research Achievements

This study develops fast and flexible spatial (and spatiotemporal) regression approaches for large and diverse geo-spatial datasets. This development is done by extending the random effects eigenvector spatial filtering (RE-ESF) approach, which is a spatial regression approach. First, we improve computational efficiency of RE-ESF by incorporating a pre-conditioning algorithm. Then, the memory consumption is drastically reduced for modeling very large samples through parallelization. After that, the developed fast approach is extended for spatio-temporal data, hierarchical data, non-Gaussian data, and other data by introducing latent variables capturing data properties. Usefulness of the proposed approach is verified by applying it to a wide variety of spatial and spatiotemporal data modeling. Finally, all the developed methods are implemented an R package spmoran to make them available for public.

Academic Significance and Societal Importance of the Research Achievements

近年急増する大規模な地理空間データを柔軟に解析するための空間回帰法を幅広く開発した。空間回帰法は空間疫学、空間計量経済学、計量地理学といった関連分野の高度化を、大規模データの解析手法の高度化の観点から後押ししうるものである。開発した各手法は既に統計ソフトウェアRのパッケージ化して一般公開済みであり、既に幅広い関連研究者に利用されている(例えば2019年度は7684回ダウンロードされた)。以上に加え、本研究で提案した空間回帰法は計算時間とメモリ消費が極めて小さく学術的にも新規的である。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (23 results)

All 2020 2019 2018 2017 Other

All Int'l Joint Research (5 results) Journal Article (6 results) (of which Int'l Joint Research: 5 results,  Peer Reviewed: 6 results) Presentation (10 results) (of which Int'l Joint Research: 6 results) Remarks (2 results)

  • [Int'l Joint Research] テキサス大学ダラス校/Montclair State University(米国)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] National University of Ireland(アイルランド)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] Wuhan University(中国)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] University of Texas at Dallas(米国)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] Rothamsted Research(英国)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Investigating high-speed rail construction's support to county level regional development in China: An eigenvector based spatial filtering panel data analysis2020

    • Author(s)
      Yu Danlin、Murakami Daisuke、Zhang Yaojun、Wu Xiwei、Li Ding、Wang Xiaoxi、Li Guangdong
    • Journal Title

      Transportation Research Part B: Methodological

      Volume: 133 Pages: 21-37

    • DOI

      10.1016/j.trb.2019.12.006

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Spatially varying coefficient modeling for large datasets: Eliminating N from spatial regressions2019

    • Author(s)
      Murakami Daisuke、Griffith Daniel A.
    • Journal Title

      Spatial Statistics

      Volume: 30 Pages: 39-64

    • DOI

      10.1016/j.spasta.2019.02.003

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A memory-free spatial additive mixed modeling for big spatial data2019

    • Author(s)
      Murakami Daisuke、Griffith Daniel A.
    • Journal Title

      Japan Journal of Statistics and Data Science

      Volume: 0 Pages: 0-0

    • NAID

      210000163444

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] The Importance of Scale in Spatially Varying Coefficient Modeling2019

    • Author(s)
      Murakami Daisuke、Lu Binbin、Harris Paul、Brunsdon Chris、Charlton Martin、Nakaya Tomoki、Griffith Daniel A.
    • Journal Title

      Annals of the American Association of Geographers

      Volume: 109 Issue: 1 Pages: 50-70

    • DOI

      10.1080/24694452.2018.1462691

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Spatially filtered unconditional quantile regression: Application to a hedonic analysis2019

    • Author(s)
      Murakami D.、Seya H.
    • Journal Title

      Environmetrics

      Volume: 印刷中 Issue: 5

    • DOI

      10.1002/env.2556

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Eigenvector spatial filtering for large datasets: fixed and random effects approaches2018

    • Author(s)
      Murakami, D., Griffith, D.A.
    • Journal Title

      Geographical Analysis

      Volume: 印刷中 Issue: 1 Pages: 23-49

    • DOI

      10.1111/gean.12156

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] A precompression approach for fast spatial mixed effects modeling2019

    • Author(s)
      Murakami Daisuke、Griffith Daniel A.
    • Organizer
      Spatial Statistics 2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Scalable geographically weighted regression for big data2019

    • Author(s)
      Murakami, D.、Tsutsumida, N.、Yoshida, T.、Nakaya, T.、Lu, B.
    • Organizer
      GeoComputation 2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 大規模な地理空間データのための空間混合効果モデリング2019

    • Author(s)
      村上大輔
    • Organizer
      統計関連学会連合大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] ビッグデータのための空間加法混合モデリング:不動産要因分析への応用2019

    • Author(s)
      Murakami Daisuke、Griffith Daniel A.
    • Organizer
      地理情報システム学会第28回研究発表大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Low rank spatial econometric models2018

    • Author(s)
      Murakami D.、Seya H.、Griffith Daniel A.
    • Organizer
      XII World Conference of the Spatial Econometrics Association
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Spatially varying coefficient model for large dataset: a rank reduction approach2017

    • Author(s)
      Murakami, D., Yamagata, Y., Daniel, A. Griffith
    • Organizer
      11th World Conference of the Spatial Econometrics Association
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Heatwave risk estimation with spatial BigData: A case study in Tokyo2017

    • Author(s)
      Murakami, D., Yamagata, Y.
    • Organizer
      Spatial Statistics 2017: One World: One Health.
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] A Moran coefficient-based mixed effect approach to investigate spatially varying relationships2017

    • Author(s)
      Murakami, D., Yoshida, T., Daniel A. Griffith
    • Organizer
      2017 IASC-NZSA Joint Conference. Auckland
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] The importance of scale in spatially varying coefficient modeling2017

    • Author(s)
      村上大輔, Paul Harris, Binbin Lu, 中谷友樹
    • Organizer
      地理情報システム学会第26回研究発表大会
    • Related Report
      2017 Research-status Report
  • [Presentation] Parsimonious Modeling in Spatial Statistics and Spatial Econometrics2017

    • Author(s)
      Tsutsumi, M., Murakami, D.
    • Organizer
      2017年度 統計関連学会連合大会
    • Related Report
      2017 Research-status Report
  • [Remarks] spmoran

    • URL

      https://cran.r-project.org/web/packages/spmoran/index.html

    • Related Report
      2019 Annual Research Report
  • [Remarks] scgwr

    • URL

      https://cran.r-project.org/web/packages/scgwr/index.html

    • Related Report
      2019 Annual Research Report

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi