• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

An efficient deep learning method to detect lesions on 3D medical images via information of anatomical landmarks

Research Project

Project/Area Number 17K17680
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Perceptual information processing
Intelligent informatics
Research InstitutionKindai University

Principal Investigator

Nemoto Mitsutaka  近畿大学, 生物理工学部, 講師 (10451808)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords転移学習 / 深層学習 / コンピュータ検出支援 / 医用画像診断 / 解剖学的ランドマーク / 深層畳み込みニューラルネットワーク / プレトレーニングモデル / 畳込みニューラルネットワーク / Fine Tuning / 機械学習 / 医用画像認識 / 診断支援
Outline of Final Research Achievements

The deep transfer learning is efficient deep learning to construct AI image recognition processes, such as a deep convolutional neural network. In the learning, a pre-training is performed with a different image dataset from a target object at first. The target pattern recognizer is constructed based on the pre-trained network. In this study, we evaluated the pre-training by medical image patches, including anatomical landmarks (LMs) for lesion pattern classification. The LM is a unique anatomical structure in the human body. Collecting the LM dataset is more accessible than the lesion data collection because those LMs exist not only in healthy cases but also in malignant cases.
Our experiments with the clinical dataset showed that the pre-training with the LM dataset brought effective image features for the lesion classification.

Academic Significance and Societal Importance of the Research Achievements

一般的に,最新のAI画像認識処理の構築には大量の学習用データが必要となる。一方で,医用画像上の病変パターンデータの大量収集は容易ではない。転移学習は,AI画像認識処理を効率的かつ少数データで構築するための2段階のAI学習法として知られている。
本研究は,医用画像上の病変パターン認識AIをより効率的に構築するための方法論に関するものである。この研究の発展により,多くの病変パターン認識AIの開発が促進され,さらには医療サービスの質向上につながるものと考える。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (7 results)

All 2020 2019 2018 2017

All Journal Article (1 results) Presentation (6 results) (of which Int'l Joint Research: 3 results,  Invited: 1 results)

  • [Journal Article] Deep Learning for Computer-Aided Diagnosis in Brain Images2017

    • Author(s)
      根本 充貴
    • Journal Title

      Medical Imaging Technology

      Volume: 35 Issue: 4 Pages: 200-205

    • DOI

      10.11409/mit.35.200

    • NAID

      130006108064

    • ISSN
      0288-450X, 2185-3193
    • Related Report
      2017 Research-status Report
  • [Presentation] A pilot study for transferring deep convolutional neural network pre-trained by local anatomical structures to computer-aided detection.2020

    • Author(s)
      Mitsutaka Nemoto
    • Organizer
      CARS 2020 Computer Assisted Radiology and Surgery
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A pilot study to classify multiple anatomical landmarks in CT by deep convolutional neural network2019

    • Author(s)
      Mitsutaka Nemoto, Yuki Yamato, Yuichi Kimura, Shouhei Hanaoka, Naoto Hayashi
    • Organizer
      CARS 2019 Computer Assisted Radiology and Surgery
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A pilot study to classify multiple anatomical landmarks in CT by deep convolutional neural network2019

    • Author(s)
      M Nemoto, Y Yamato, Y Kimura, S Hanaoka, N Hayashi
    • Organizer
      CARS 2019 Computer Assisted Radiology and Surgery
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 畳み込みニューラルネットワーク転移学習による解剖学的ランドマーク自動認識の初期検討2019

    • Author(s)
      根本充貴,山戸祐樹,木村裕一,花岡昇平,林直人
    • Organizer
      第3回人工知能応用医用画像研究会
    • Related Report
      2018 Research-status Report
  • [Presentation] 人工知能・機械学習による画像診断支援: 画像診断支援のいまを知る2018

    • Author(s)
      根本充貴
    • Organizer
      第40回 ソニックCTカンファレンス
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Convolutional neural networkを用いた解剖学的ランドマークの自動検出に関する初期検討2018

    • Author(s)
      根本充貴,渡辺翔吾,木村裕一,花岡昇平,野村行弘,吉川健啓,林直人
    • Organizer
      電子情報通信学会・医用画像研究会
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi