Enormous residual stress in ferroelastic ceramics and its application as energy storage materials
Project/Area Number |
17K18819
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Research Field |
Mechanics of materials, Production engineering, Design engineering, and related fields
|
Research Institution | Saitama University |
Principal Investigator |
Araki Wakako 埼玉大学, 理工学研究科, 准教授 (40359691)
|
Project Period (FY) |
2017-06-30 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
|
Keywords | 自己粉砕 / 自己治癒 / ランタン酸化物 / 水酸化 / セラミックス / 酸化ランタン / 自己微粉化 / セラミクス / 機械的特性 / 強弾性 / 残留応力 / 破壊 / 機械材料・材料力学 / 構造・機能材料 / 新エネルギー |
Outline of Final Research Achievements |
This study developed the novel self-pulverisation oxides and elucidated the self-pulverisation mechanism. The results based on XRD, SEM, and EDX demonstrated that a small amount of excessive LaCoO3 mixed in oxides hydroxylates with a significant volume expansion, eventually causing the pulverisation of oxides. The local stress distribution and critical crack length around excessive LaCoO3 particles are estimated. Various conventional ceramics were successfully pulverised by controlling the excessive amount of LaCoO3 and the atmosphere.
|
Academic Significance and Societal Importance of the Research Achievements |
自己治癒材料という知的材料の概念はこれまでにも広く研究されてきたものの,自己粉砕材料という概念はこれまでに存在しなかった.本研究では,自己粉砕,特にかたいセラミクスが自発的に破壊する,という新しい概念を導入し,作製・制御の実現および学術的な説明に成功した.
|
Report
(4 results)
Research Products
(3 results)