Project/Area Number |
17K19148
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Research Field |
Polymer, Organic materials, and related fields
|
Research Institution | The University of Tokyo |
Principal Investigator |
Yoshida Ryo 東京大学, 大学院工学系研究科(工学部), 教授 (80256495)
|
Project Period (FY) |
2017-06-30 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2019: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
|
Keywords | 機能性高分子 / ブロックコポリマー / 自励振動 / 振動反応 / 高分子ゲル / 刺激応答材料 / 生体材料 / 高分子材料 / ゲル |
Outline of Final Research Achievements |
Various biological behaviors are fueled by “respiration”, which is an example of catabolism. So far, we have reported various self-oscillating soft materials exhibiting bioinspired dynamic movements. These auton-omous polymer systems are driven by the Belousov-Zhabotinsky (BZ) reaction, which is analogous to the tricarboxylic acid (TCA) cycle that is an integral part of respiration. However, in the BZ reaction, the external addition of an oxidizing agent is necessary to initiate the oxidation pro-cess, which is realized by intracellular moieties such as ubiquinone in living systems. Herein, we realized self-oscillating micelles that are driven without the external addition of an oxidizing agent. This was achieved by embedding the oxidizing source into the structure of the self-oscillating AB diblock copolymers. This strategy introduces a new func-tion equivalent to intracellular oxidizing moieties, and is useful for the design of completely autonomous bio-inspired materials.
|
Academic Significance and Societal Importance of the Research Achievements |
生体が示す高度な自律性に動機付けされた合成材料として、我々は自励振動高分子材料と呼ばれるコンセプトを世界に先駆けて提唱し、その研究を先導してきた。自励振動材料の応用研究へ向けた道を拓くため、本研究課題では、生理条件下で駆動する自励振動高分子材料の創出を目的とする。本研究課題が達成されれば、生体内で駆動する自律的なマイクロマシンや、周期的に薬物を放出する自律的ドラックデリバリーシステムなど、刺激応答材料を凌駕する革新的な自律性を持つ生体材料創製への大きな足掛かりとなると考えられる。
|