Project/Area Number |
17K19178
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Research Field |
Inorganic materials chemistry, Energy-related chemistry, and related fields
|
Research Institution | Kyoto University |
Principal Investigator |
Sato Ryota 京都大学, 化学研究所, 助教 (80629890)
|
Project Period (FY) |
2017-06-30 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2019: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2017: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | 可視プラズモニクス / 局在表面プラズモン共鳴(LSPR) / 無機ナノ粒子 / 規則合金 / 金属間化合物 / 貨幣金属フリー / 錬金術 / 合金 / ナノ粒子 / 金属合金 / 可視光プラズモン / 局在表面プラズモン共鳴 |
Outline of Final Research Achievements |
Localized surface plasmon resonance (SLPR) in the visible region is one of the optical properties of nano-sized coinage metals, namely, gold (Au), silver (Ag), and copper (Cu)). In this study, we succeeded in synthesizing spherical nanoparticles (NPs) of ordered alloy in which palladium (Pd) and indium (In) are regularly arranged(B2-PdIn) and experimentally demonstrating that B2-PdIn NPs have LSPR properties similar to coinage metals NPs. Also, by making full use of theoretical calculations, we clarified the similarity between the electronic structures of B2-PdIn and coinage metals. On the other hand, we found in photo-excited electron dynamics that the difference between the bimetallic ordered alloys and monometallic coinage metals due to the crystal structure of B2-PdIn in which different elements with different valence numbers are regularly arranged.
|
Academic Significance and Societal Importance of the Research Achievements |
Auナノ粒子溶液の発色起源がマイケル・ファラデーによって解明された1857年以降、理論的にも提案されなかった可視プラズモニック合金材料群を、貨幣金属以外の元素で創成することに成功した。貨幣金属にかわる新奇プラズモン材料の設計指針、即ち、プラズモニクスにおける広義の錬金術的材料創成の学術が確立されることによって、光学特性は同じであっても、化学特性は異なる材料の創製が可能になる。合金であれば元素の組み合わせは多様であり、候補材料も単一金属と比べてはるかに多く、特性制御もより平易になることから、研究の更なる深化による幅広い学術分野への波及効果や、社会実装可能な高性能光機能材料の開発が期待される。
|