• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

ハイブリッド数理モデルによる時系列データからの相互関係自動導出法に関する研究

Research Project

Project/Area Number 18700161
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeSingle-year Grants
Research Field Intelligent informatics
Research InstitutionWaseda University

Principal Investigator

田中 康司  Waseda University, 付置研究所, 講師 (30421225)

Project Period (FY) 2006 – 2007
Project Status Completed (Fiscal Year 2007)
Budget Amount *help
¥3,500,000 (Direct Cost: ¥3,500,000)
Fiscal Year 2007: ¥1,600,000 (Direct Cost: ¥1,600,000)
Fiscal Year 2006: ¥1,900,000 (Direct Cost: ¥1,900,000)
Keywordsアルゴリズム / 数値最適化 / 生体生命情報学 / グリッド
Research Abstract

遺伝子ネットワークなどの同定は、対象となる相互関係を数理モデルで表現し、得られた時系列データを再現するように数理モデルを数値最適化することで行うが、扱うデータが非常に膨大で、対象とする系も大規模であることから、相互関係を自動導出するための高速かつ高精度な手法はまだ確立されていない。
相互関係の自動導出において、一般的に数理モデルには質量作用則表記またはS-system表記が用いられるが、それぞれにメリット・デメリットがあり、質量作用則表記では、相互関係の詳細な記述が可能で高精度である反面、最適化対象となるパラメータが非常に多く高速化が困難である。一方、S-system表記では、最適化対象となるパラメータが質量作用則表記に比べ少なく高速化が可能である反面、質量作用則表記の近似式であるため、相互関係の記述が概略にとどまる。
本研究では、グリッド技術を用いた大規模分散並列処理およびハイブリッド数理モデルを融合した新しい数値最適化手法を提案し、高速かつ高精度な相互関係自動導出法を確立し、その有効性を示すことを目的としている。
本年度は、昨年度開発したプロトタイプシステムの評価をさらに詳細に行った。
具体的な成果として、人工的に作成した時系列データでの評価実験において、提案手法は、従来手法である「数理モデルに質量作用則、最適化手法に遺伝的プログラミング」を採用した実験で用いた時系列データ数の1/4のデータ数で同精度の結果を得ることに成功した。
また、プロトタイプシステムの並列化を行い、高いスケーラビリティを示した。
上述の成果をThe Sixth Asia Pacific Bioinformatics Conference (APBC2008)で発表し、関連する研究者と情報交換を行った。
今後は、より大規模なデータでの評価実験を行い、本格的なシステム開発および実データでの実験を行う予定である。

Report

(2 results)
  • 2007 Annual Research Report
  • 2006 Annual Research Report
  • Research Products

    (1 results)

All 2008

All Presentation (1 results)

  • [Presentation] Design of Interrelation Determination Algorithm for the Inference of Genetic Networks Using Hybrid Mathematical Model2008

    • Author(s)
      Kouji TANAKA
    • Organizer
      The Sixth Asia Pacific Bioinformatics Conference (APBC2008)
    • Place of Presentation
      Kyoto, JAPAN
    • Related Report
      2007 Annual Research Report

URL: 

Published: 2006-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi