• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Berkovich 解析空間とトロピカル幾何,代数・数論力学系の展開

Research Project

Project/Area Number 18H01114
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionDoshisha University

Principal Investigator

川口 周  同志社大学, 理工学部, 教授 (20324600)

Co-Investigator(Kenkyū-buntansha) 山木 壱彦  筑波大学, 数理物質系, 教授 (80402973)
Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Granted (Fiscal Year 2022)
Budget Amount *help
¥11,570,000 (Direct Cost: ¥8,900,000、Indirect Cost: ¥2,670,000)
Fiscal Year 2022: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2021: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2020: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2019: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2018: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Keywords非アルキメデス幾何 / トロピカル幾何 / 代数・数論力学系 / Berkovich解析空間 / Berkovich 解析空間
Outline of Annual Research Achievements

互いに密接に関係するBerkovich解析空間とトロピカル幾何,代数・数論力学系の研究を進める.非アルキメデス体上に定義された代数多様体に対して,それに付随するBerkovich解析空間を考えることができる.Berkovich解析空間には,スケルトンとよばれる整構造をもつ多面体(トロピカル多様体)が埋め込まれており,Berkovich解析空間からスケルトンへのレトラクションがある一方で,スケルトンはBerkovich解析空間を近似しているとみなせる.また,代数・数論力学系における周期点の分布の情報を与えるYuan氏による算術的等分定理や,アーベル多様体の部分多様体上の非アルキメデス的標準測度のGubler氏による研究など,Berkovich解析空間上の測度は,代数的点の分布の情報を与える.今年度は,研究分担者の山木壱彦氏と共同で,トーリック多様体をトロピカル化した空間の性質を主に調べた.特にトロピカル・トーリック多様体上の因子の positivity についての研究を進めた.高次元のトロピカル多様体の因子の理論などは,まだ発展途中である.トロピカル・トーリック多様体は扱いやすい対象であるので,その上で豊富な因子の性質などを,通常の代数幾何のトーリック多様体と対比させながら調べた.さらに,吉川謙一氏と向井茂氏と共同で,j不変量とBorcherdsのPhi関数の関係について調べた.2020年3月に,当該研究課題に関する国際研究集会を行う予定で時間をかけて準備を進め,海外からの第一線の研究者も多く来て頂ける予定であったが,コロナ禍が始まってしまい研究集会を中止せざるを得なくなったのは残念であった.

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

山木壱彦氏とのBerkovich解析空間とトロピカル幾何に関する共同研究や,吉川謙一氏と向井茂氏とのj不変量とBorcherdsのPhi関数の関係についての研究が進んだので.

Strategy for Future Research Activity

研究時間の確保をして,研究を進めていきたい.

Report

(2 results)
  • 2019 Annual Research Report
  • 2018 Annual Research Report

Research Products

(6 results)

All 2019 2018 Other

All Int'l Joint Research (1 results) Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (3 results) (of which Int'l Joint Research: 2 results,  Invited: 3 results)

  • [Int'l Joint Research] National Taiwan Normal University(台湾)

    • Related Report
      2018 Annual Research Report
  • [Journal Article] Effective Faithful Tropicalizations Associated to Adjoint Linear Systems2019

    • Author(s)
      Kawaguchi Shu、Yamaki Kazuhiko
    • Journal Title

      International Mathematics Research Notices

      Volume: - Pages: 6089-6112

    • DOI

      10.1093/imrn/rnx302

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Resultants and the Borcherds Φ-function2018

    • Author(s)
      Shu Kawaguchi, Shigeru Mukai, Ken-Ichi Yoshikawa
    • Journal Title

      American Journal of Mathematics

      Volume: 140 Pages: 1471-1519

    • DOI

      10.1353/ajm.2018.0045

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Presentation] j-invariant and Borcherds Phi-function2019

    • Author(s)
      Shu Kawaguchi
    • Organizer
      Number Theory Seminar, Cambridge University
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Some arithmetic properties of one-parameter families of Henon maps2019

    • Author(s)
      Shu Kawaguchi
    • Organizer
      Vietnam-USA Joint Mathamatical Meeting, Special Session on Complex Geometry and Dynamical Systems
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Heights and periodic points for one-parameter families of Henon maps2018

    • Author(s)
      Shu Kawaguchi
    • Organizer
      Intercity Seminar on Arakelov Geometry 2018
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited

URL: 

Published: 2018-04-23   Modified: 2022-12-28  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi