Electric field induced spinwave generation and its magnonics device application
Project/Area Number |
18H01862
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 29010:Applied physical properties-related
|
Research Institution | Kyushu Institute of Technology |
Principal Investigator |
Fukuma Yasuhiro 九州工業大学, 大学院情報工学研究院, 教授 (90513466)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥17,940,000 (Direct Cost: ¥13,800,000、Indirect Cost: ¥4,140,000)
Fiscal Year 2020: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2019: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2018: ¥11,960,000 (Direct Cost: ¥9,200,000、Indirect Cost: ¥2,760,000)
|
Keywords | スピントロニクス / 界面磁気異方性 / スピン波 / マグノニクス / パラメトリック励振 / 多数決論理演算 / マグノン / 電界効果 / 干渉 |
Outline of Final Research Achievements |
Electric-field controlled magnetization dynamics and low-relaxation magnetic materials are an important integrant in low power magnonics devices. Firstly, we demonstrate electric-field induced parametric excitation for CoFeB/MgO junctions by using interfacial in-plane magnetic anisotropy. When the in-plane magnetic anisotropy and the external magnetic field is parallel to each other, spinwave is efficiently excited by using electric-field induced parametric excitation. Its wavelength and wavenumber is tuned by changing input power and frequency of the applied voltage. Secondly, we report facet dependent induced magneto-crystalline anisotropy and its effect on magnetization relaxation parameters in 40 nm sputter deposited monocrystalline single phase Y3Fe5O12 thin films. For the (111) oriented sample, the relaxation shows a minimum which is no significant anisotropic direction and then the spinwave with smaller relaxation is observed.
|
Academic Significance and Societal Importance of the Research Achievements |
スピン波とは、双極子であるスピンの歳差運動が位相を変えながら試料中を波のように伝搬する現象である。電荷の移動を伴わないことからジュール損失がない。このために、本研究にて開発した電界効果によるナノ波長スピン波の生成技術を活用して、発熱が極めて少ない低消費電力電子デバイスの開発が期待される。 また、本研究にてスピン波励起に成功したMgO/CoFeB接合は、ハードディスクドライブ用磁気ヘッドや磁気ランダムアクセスメモリ応用におけるトンネル磁気抵抗素子として実用化されている。数十nmサイズまでの素子作製技術が確立されており、既存のCMOS技術とも高い整合性をもつことから、迅速な応用展開が期待される。
|
Report
(4 results)
Research Products
(19 results)
-
-
-
-
-
[Journal Article] Enhanced Spin Hall Effect in S-Implanted Pt2020
Author(s)
U. Shashank, R. Medwal, T. Shibata, R. Nongjai, J. V. Vas, M. Duchamp, K. Asokan, R. S. Rawat, H. Asada, S. Gupta, Y. Fukuma
-
Journal Title
Advanced Quantum Technologies
Volume: 2010453
Pages: 1-7
DOI
NAID
Related Report
Peer Reviewed / Int'l Joint Research
-
-
-
-
-
-
-
-
-
[Presentation] High charge-to-spin interconversion in Sulphur implanted Platinum2020
Author(s)
U. Shashank, R. Medwal, T. Shibata, R. Nongjai, J. V. Vas, M. Duchamp, K. Asokan, R. S. Rawat, H. Asada, S. Gupta, Y. Fukuma
Organizer
5th International conference on Emerging Electronics
Related Report
Int'l Joint Research
-
-
-
-
-