• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The development of a fairness-aware data-transformation technique and the validation of its effectiveness through a cloudsoucing environment

Research Project

Project/Area Number 18H03300
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 61030:Intelligent informatics-related
Research InstitutionNational Institute of Advanced Industrial Science and Technology

Principal Investigator

Kamishima Toshihiro  国立研究開発法人産業技術総合研究所, 情報・人間工学領域, 主任研究員 (50356820)

Co-Investigator(Kenkyū-buntansha) 馬場 雪乃  筑波大学, システム情報系, 准教授 (40711453)
鹿島 久嗣  京都大学, 情報学研究科, 教授 (80545583)
Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥10,660,000 (Direct Cost: ¥8,200,000、Indirect Cost: ¥2,460,000)
Fiscal Year 2020: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2019: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2018: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Keywords公平性 / クラウドソーシング / 機械学習 / データマイニング
Outline of Final Research Achievements

We tackle with one task related to fairness-aware machine learning, in which the predictor tries to satisfy some fairness constraint, such as statistical stability. In the previous literature of fairness-aware machine learning, the prediction accuracy is evaluated on the observed dataset whose decision labels are supposed to be unfair. This is due to the restriction that truly fair labels cannot be observed. We tried to evaluate the precision on the fair labels as proxy by using preference data influenced by cognitive biases. We collected such data through a crowdsourcing service. Then, to evaluate how much information of fair decisions are extracted from these observations, we developed the notion of stability and a method to quantify the stability.

Academic Significance and Societal Importance of the Research Achievements

機械学習の公平性については2011年から取り組んでいるが,2016年の米大統領選や,欧州のGDPR試行に伴い注目され,世界的に研究が拡大している研究分野である.しかしながら,本当はあるべき公平な決定というものが観測できない根本的な制限がある.この制限に対して,センシティブ情報の代用として認知バイアスを利用して,人工的にデータと収集するという手段で挑んだのが本研究である.

Report

(4 results)
  • 2021 Final Research Report ( PDF )
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • Research Products

    (20 results)

All 2022 2021 2020 2019 2018 Other

All Journal Article (9 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 2 results,  Open Access: 2 results) Presentation (7 results) (of which Invited: 2 results) Book (2 results) Remarks (2 results)

  • [Journal Article] 私のブックマーク:人工知能と公平性2022

    • Author(s)
      神嶌 敏弘
    • Journal Title

      Journal of the Japanese Society for Artificial Intelligence

      Volume: 37 Issue: 2 Pages: 230-233

    • DOI

      10.11517/jjsai.37.2_230

    • NAID

      130008166467

    • ISSN
      2188-2266, 2435-8614
    • Year and Date
      2022-03-01
    • Related Report
      2020 Annual Research Report
    • Open Access
  • [Journal Article] Preliminary Experiemnts on the Stability of Bias-aware Techniques2021

    • Author(s)
      T. Kamishima, S. Akaho, Y. Baba, and H. Kashima
    • Journal Title

      2nd Int'l Workshop on Algorithmic Bias in Search and Recommendation {Bias 2021}

      Pages: 25-35

    • DOI

      10.1007/978-3-030-78818-6_4

    • ISBN
      9783030788179, 9783030788186
    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 3nd FAccTRec Workshop: Responsible Recommendation2020

    • Author(s)
      M. D. Ekstrand, P.-N. Schwab, J. Garcia-Gathright, T. Kamishima, and N. Sonboli
    • Journal Title

      Proc. of the 14th ACM Conf. on Recommender Systems

      Pages: 607-608

    • DOI

      10.1145/3383313.3411538

    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Journal Article] Multistakeholder recommendation: Survey and research directions2020

    • Author(s)
      Abdollahpouri Himan、Adomavicius Gediminas、Burke Robin、Guy Ido、Jannach Dietmar、Kamishima Toshihiro、Krasnodebski Jan、Pizzato Luiz
    • Journal Title

      User Modeling and User-Adapted Interaction

      Volume: 30 Issue: 1 Pages: 127-158

    • DOI

      10.1007/s11257-019-09256-1

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] 機械学習分野の俯瞰と展望2019

    • Author(s)
      神嶌 敏弘、鹿島 久嗣
    • Journal Title

      人工知能

      Volume: 34 Pages: 905-915

    • Related Report
      2019 Annual Research Report
  • [Journal Article] 変わりゆく機械学習と変わらない機械学習2019

    • Author(s)
      神嶌 敏弘
    • Journal Title

      日本物理学会誌

      Volume: 74 Pages: 5-13

    • NAID

      130007677284

    • Related Report
      2018 Annual Research Report
    • Open Access
  • [Journal Article] 機械学習・データマイニングにおける公平性2019

    • Author(s)
      神嶌 敏弘,小宮山 淳平
    • Journal Title

      人工知能

      Volume: 34 Pages: 196-204

    • NAID

      130007917553

    • Related Report
      2018 Annual Research Report
  • [Journal Article] 2nd FATREC Workshop: Responsible Recommendation2019

    • Author(s)
      T. Kamishima, P.-N. Schwab, M. D. Ekstrand
    • Journal Title

      Proc. of the 12th ACM Conf. on Recommender Systems

      Volume: なし Pages: 516-516

    • DOI

      10.1145/3240323.3240335

    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Journal Article] サービスの公平性に配慮したデータ分析技術2018

    • Author(s)
      神嶌 敏弘
    • Journal Title

      情報処理

      Volume: 59 Pages: 433-436

    • Related Report
      2018 Annual Research Report
  • [Presentation] バイアス考慮型分類器の安定性に関する予備調査2021

    • Author(s)
      神嶌 敏弘, 赤穂 昭太郎, 馬場 雪乃, 鹿島 久嗣
    • Organizer
      人工知能学会全国大会(第35回)
    • Related Report
      2020 Annual Research Report
  • [Presentation] 独立性制約下の変換の認知バイアスの補正への適用2020

    • Author(s)
      神嶌 敏弘, 馬場 雪乃, 鹿島 久嗣
    • Organizer
      人工知能学会全国大会(第34回)
    • Related Report
      2020 Annual Research Report
  • [Presentation] 機械学習と公平性2020

    • Author(s)
      機械学習における公平性の概要
    • Organizer
      機械学習と公平性に関するシンポジウム
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 機械学習の公平性への取り組み -Fairness-aware data miningを中心に-2019

    • Author(s)
      神嶌 敏弘
    • Organizer
      第33回人工知能学会全国大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 機械学習における公平性の概要2019

    • Author(s)
      神嶌 敏弘
    • Organizer
      第38回産総研AIセミナー
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Formal Fairness in Machine Learning2019

    • Author(s)
      T. Kamishima
    • Organizer
      Cybersecurity Cooperation between France and Japan / Intermediate Workshop
    • Related Report
      2018 Annual Research Report
  • [Presentation] 公平ロジスティック回帰での確定的決定則の影響2018

    • Author(s)
      神嶌 敏弘,赤穂 昭太郎,麻生 英樹,佐久間 淳
    • Organizer
      人工知能学会全国大会(第32回)
    • Related Report
      2018 Annual Research Report
  • [Book] マスターアルゴリズム 世界を再構築する「究極の機械学習」2021

    • Author(s)
      ペドロ・ドミンゴス、神嶌 敏弘
    • Total Pages
      522
    • Publisher
      講談社
    • ISBN
      9784062192231
    • Related Report
      2020 Annual Research Report
  • [Book] 「機械学習の動向と深層学習の位置づけ」(AI事典第3版)2019

    • Author(s)
      神嶌 敏弘
    • Total Pages
      1
    • Publisher
      近代科学社
    • ISBN
      9784764906044
    • Related Report
      2019 Annual Research Report
  • [Remarks] Fairness-Aware Machine Learning and Data Mining

    • URL

      http://www.kamishima.net/faml/

    • Related Report
      2019 Annual Research Report
  • [Remarks] Fairness-Aware Data Mining

    • URL

      http://www.kamishima.net/fadm/

    • Related Report
      2018 Annual Research Report

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi