Project/Area Number |
18K00036
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 01010:Philosophy and ethics-related
|
Research Institution | Kanazawa University |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
|
Keywords | 論理定項 / 証明論的意味論 / 反映原理 / シークエント計算 / 非古典論理 / クライゼル / informal rigour / 竹内外史 / 構成の理論 / 構成的数学 / クライゼル-グッドマンのパラドックス / nested sequents / labelled sequents / 証明論 / Stability / 直観主義論理 / 直観主義解析学 / 非形式的厳密さ / 論理的帰結 / 完全性定理 / 連続体仮説 / ラベル付きシークエント計算 / モデル論的帰結関係 / 非可述的 / logical constant / nested sequent / Belnap's criteria / stability / DoI / impredicativity / squeezing argument / logical consequence / ネステッド・シークエント |
Outline of Final Research Achievements |
We can summarize the outline of the main research achievements based on this grant as follows. First, we gave a characterization of the notion of logical constant in a proof-theoretic manner in the style of "the principle of reflection", by using a framework of certain generalized sequent calculi (in particular, nested sequents). We have justified the idea by proving the cut-elimination theorems for the sequent calculi. In relation to these results, we have also proven the cut-elimination theorems for a whole bunch of generalized sequent calculi for various non-classical logics. Secondly, we gave a systematic interpretation and clarification of Kreisel's methodological concept called "informal rigour." Informal rigour was introduced in order to understand the relationship between logical and mathematical concepts (including logical constants) in a formalized system and their informal counterparts, which we usually understand by using natural languages.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の成果の学術的意義の一つは「論理定項とは何か」という論理学の哲学に関する根本問題の一つに証明論の立場から一定の解答を与えたということである。もう一つはその解答を得る中で関連したいくつかの論理体系に関して、証明論の基本定理であるカット除去定理という純粋に技術的(つまり数学的)な結果を得ることができたことである。また、クライゼルの「非形式的厳密さ」の概念の探究により、「形式的であるとはどのようなことか」という数理論理学の根本問題への解答を与えることに一定の貢献することができた。社会的意義としては、計算機科学での研究方法に間接的に影響を及ぼすという形での当該分野の技術的発展への貢献がある。
|