• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

On the complement conjecture for knots in lens spaces

Research Project

Project/Area Number 18K03287
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionNihon University

Principal Investigator

ICHIHARA Kazuhiro  日本大学, 文理学部, 教授 (00388357)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords結び目 / レンズ空間 / デーン手術 / トポロジー / 3次元多様体 / 結び目補空間 / 3次元多様体
Outline of Final Research Achievements

The main subject of this research is to consider the problem asking when the complement of a knot determines the type of the knot. This is one of the fundamental problems in Knot theory. The problem was solved for knots in the 3-sphere in the late 1980's. In this research, we focused on knots in lens spaces, which give a simple class of 3-manifolds including the 3-sphere. For the problem, to study the operation to create a 3-manifold, called Dehn surgery, has played quite an important role. In fact, the main part of this research is focused on cosmetic Dehn surgeries, which generate homeomorphic manifold pairs. As a research result, several partial solutions to this problem were obtained. In addition, the fact that this research has led to new advances in research both in Japan and overseas can be regarded as an indirect result of our research.

Academic Significance and Societal Importance of the Research Achievements

空間内の結び目を数学的に研究する際,その補空間に着目することが多くなされている。実際,結び目が同値(連続変形でうつりあう)ならば補空間は同相(位相幾何において等しい)ということが容易にわかる。しかし,その逆,補空間が同相ならば結び目が同値になるか?という問題は自明でなく,長い間,未解決問題であった。1980年代にこの問題は最も基礎的な3次元球面内の結び目については肯定的に解決されたが,一般の3次元多様体内の結び目については現在も未解決である。本研究では,レンズ空間と呼ばれるクラスの3次元多様内の結び目についてこの問題を研究し,いくつかの部分的解決を得た。

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (34 results)

All 2023 2022 2021 2020 2019 2018 Other

All Int'l Joint Research (4 results) Journal Article (11 results) (of which Int'l Joint Research: 4 results,  Peer Reviewed: 11 results,  Open Access: 3 results) Presentation (17 results) (of which Int'l Joint Research: 5 results,  Invited: 3 results) Funded Workshop (2 results)

  • [Int'l Joint Research] カリフォルニア州立大学チコ校(米国)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] カリフォルニア州立大学チコ校(米国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] The University of Melbourne(オーストラリア)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] Chinese University of Hong Kong(中国)

    • Related Report
      2019 Research-status Report
  • [Journal Article] Knots in homology lens spaces determined by their complements2022

    • Author(s)
      Kazuhiro Ichihara and Toshio Saito
    • Journal Title

      Bulletin of the Korean Mathematical Society

      Volume: 59 Pages: 869-877

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Two-bridge knots admit no purely cosmetic surgeries2021

    • Author(s)
      Ichihara Kazuhiro、Jong In Dae、Mattman Thomas W、Saito Toshio
    • Journal Title

      Algebraic & Geometric Topology

      Volume: 21 Issue: 5 Pages: 2411-2424

    • DOI

      10.2140/agt.2021.21.2411

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Chirally Cosmetic Surgeries and Casson Invariants2021

    • Author(s)
      ICHIHARA Kazuhiro、ITO Tetsuya、SAITO Toshio
    • Journal Title

      Tokyo Journal of Mathematics

      Volume: 44 Issue: -1 Pages: 1-24

    • DOI

      10.3836/tjm/1502179325

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Integral left-orderable surgeries on genus one fibered knots2021

    • Author(s)
      Ichihara Kazuhiro、Nakae Yasuharu
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 30 Issue: 04 Pages: 2150018-2150018

    • DOI

      10.1142/s0218216521500188

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Minimal coloring numbers on minimal diagrams of torus links2020

    • Author(s)
      Ichihara Kazuhiro、Ishikawa Katsumi、Matsudo Eri
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 29 Issue: 08 Pages: 2050059-2050059

    • DOI

      10.1142/s0218216520500595

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Most graphs are knotted2020

    • Author(s)
      Ichihara Kazuhiro、Mattman Thomas W.
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 29 Issue: 14 Pages: 2071003-2071003

    • DOI

      10.1142/s0218216520710030

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Decomposing Heegaard splittings along separating incompressible surfaces in 3-manifolds2019

    • Author(s)
      Ichihara Kazuhiro、Ozawa Makoto、Hyam Rubinstein J.
    • Journal Title

      Topology and its Applications

      Volume: 264 Pages: 21-26

    • DOI

      10.1016/j.topol.2019.06.022

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Vanishing nontrivial elements in a knot group by Dehn fillings2019

    • Author(s)
      Ichihara Kazuhiro、Motegi Kimihiko、Teragaito Masakazu
    • Journal Title

      Topology and its Applications

      Volume: 264 Pages: 223-232

    • DOI

      10.1016/j.topol.2019.06.023

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] A note on Jones polynomial and cosmetic surgery2019

    • Author(s)
      Ichihara Kazuhiro、Wu Zhongtao
    • Journal Title

      Communications in Analysis and Geometry

      Volume: 27 Issue: 5 Pages: 1087-1104

    • DOI

      10.4310/cag.2019.v27.n5.a3

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Cosmetic banding on knots and links2018

    • Author(s)
      Ichihara K.、Jong I. D.、Masai H.
    • Journal Title

      Osaka Journal of Mathematics

      Volume: 55 Pages: 731-745

    • NAID

      120006530159

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Achiral 1-Cusped Hyperbolic 3-Manifolds Not Coming from Amphicheiral Null-homologous Knot Complements2018

    • Author(s)
      Ichihara K.、Jong I. D.、Taniyama K.
    • Journal Title

      Lobachevskii Journal of Mathematics

      Volume: 39 Issue: 9 Pages: 1353-1361

    • DOI

      10.1134/s199508021809038x

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Computations of invariants for knots not to have purely cosmetic surgeries2022

    • Author(s)
      市原一裕
    • Organizer
      新KOOKセミナー
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Coloring links by symmetric group of order 32022

    • Author(s)
      Kazuhiro Ichihara
    • Organizer
      The 17th East Asian Conference on Geometric Topology
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] 双曲デーン手術定理とその精密化(サーベイ)2022

    • Author(s)
      市原一裕
    • Organizer
      微分トポロジー '22
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Knots in homology lens spaces determined by their complements2021

    • Author(s)
      市原一裕
    • Organizer
      研究集会「拡大KOOKセミナー 2021」
    • Related Report
      2021 Research-status Report
  • [Presentation] Remarks on chirally cosmetic surgeries on knots2021

    • Author(s)
      市原一裕
    • Organizer
      研究集会「東北結び目セミナー 2021」
    • Related Report
      2021 Research-status Report
  • [Presentation] A note on knots in lens spaces determined by their complements2021

    • Author(s)
      Kazuhiro Ichihara
    • Organizer
      The 16th East Asian Conference on Geometric Topology
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] A note on knots in lens spaces determined by their complements2020

    • Author(s)
      市原一裕
    • Organizer
      研究集会「拡大KOOKセミナー 2020」
    • Related Report
      2020 Research-status Report
  • [Presentation] 結び目に沿った矯飾的手術について (On cosmetic surgery on knots)2020

    • Author(s)
      市原一裕
    • Organizer
      第67回 トポロジーシンポジウム・オンライン
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Two-bridge knots admit no purely cosmetic surgeries2020

    • Author(s)
      Kazuhiro Ichihara
    • Organizer
      The 15th East Asian Conference on Geometric Topology
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Complete exceptional surgeries on two-bridge links2019

    • Author(s)
      市原一裕
    • Organizer
      拡大KOOKセミナー 2019
    • Related Report
      2019 Research-status Report
  • [Presentation] Minimal coloring numbers on minimal diagrams of torus links2019

    • Author(s)
      Kazuhiro Ichihara
    • Organizer
      Knots in Tsushima 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Decomposing Heegaard splittings along separating incompressible surfaces in 3-manifolds2019

    • Author(s)
      市原一裕
    • Organizer
      日本数学会2019年度年会
    • Related Report
      2018 Research-status Report
  • [Presentation] Minimal coloring numbers of Z -colorable links2018

    • Author(s)
      市原一裕
    • Organizer
      研究集会 Intelligence of Low-dimensional Topology
    • Related Report
      2018 Research-status Report
  • [Presentation] Cosmetic surgeries on knots2018

    • Author(s)
      Kazuhiro Ichihara
    • Organizer
      International Congress of Mathematicians 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 3次元多様体の双曲性判定2018

    • Author(s)
      市原一裕
    • Organizer
      「精度保証付き数値計算の基礎」チュートリアル
    • Related Report
      2018 Research-status Report
  • [Presentation] A lower bound on the number of diagonals for polyhedra2018

    • Author(s)
      市原一裕
    • Organizer
      研究集会『トポロジーとコンピュータ 2018』
    • Related Report
      2018 Research-status Report
  • [Presentation] Most graphs are knotted2018

    • Author(s)
      市原一裕
    • Organizer
      研究集会『結び目の数理』
    • Related Report
      2018 Research-status Report
  • [Funded Workshop] Breadth in low-dimensional topology2023

    • Related Report
      2022 Annual Research Report
  • [Funded Workshop] Workshop "Topology and Computer 2019"2019

    • Related Report
      2019 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi