Project/Area Number |
18K05537
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 38050:Food sciences-related
|
Research Institution | Takasaki University of Health and Welfare |
Principal Investigator |
Sakai Takahiro 高崎健康福祉大学, 薬学部, 助教 (10418618)
|
Co-Investigator(Kenkyū-buntansha) |
今井 純 高崎健康福祉大学, 薬学部, 准教授 (30342918)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 酸化ストレス / 活性酸素種 / ヒドロキシラジカル / トランスジェニックマウス / 炎症 / 細胞老化 / エルゴチオネイン / 活性酸素 / 抗酸化物質 |
Outline of Final Research Achievements |
Hydroxyl radical (・OH) has the strongest oxidative power among active oxygen species (ROS) that are biosynthesized in vivo, and is thought to have a great effect on the onset and exacerbation of oxidative stress-related diseases. However, since ・OH is biosynthesized in vivo in a non-enzyme-dependent manner, there is no appropriate analysis method such as a gene knockout method. Therefore, there are still many unclear points about the function of ・OH in the living body. Therefore, in this study, we focused on ergothioneine (EGT), which specifically eliminates ・OH, in order to clarify the function of ・OH in vivo, and we developed a transgenic (Egt-Tg) mouse that biosynthesizes EGT.
|
Academic Significance and Societal Importance of the Research Achievements |
ROSは、細胞を酸化損傷することによって酸化ストレスを誘導する。生体内のROSのうちO2-およびH2O2は、これらの還元酵素が生体内に存在するため、遺伝子KO法によって、様々な機能が解明されてきた。しかしながら、ROSの中でも酸化力が最も強く、酸化ストレスの根源とされる・OHは、フェントン反応等の生体内金属触媒反応によって生成されることに加え、・OHを生体内で消去する還元酵素が無い。そのため、生体内における・OHの機能は未だに不明瞭な点が多い。このことから、本研究で開発したEgt-Tg マウスは、in vivoにおいて・OHの詳細な機能を解明できる極めて有用な解析ツールである。
|