• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Spatio-Temporal Data Mining for Real World Information Analysis

Research Project

Project/Area Number 18K11320
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 60080:Database-related
Research InstitutionHiroshima City University

Principal Investigator

Tamura Keiichi  広島市立大学, 情報科学研究科, 教授 (80347616)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords時空間データマイニング / ソーシャルメディア / マルチモーダル / 深層学習 / 高性能データマイニング
Outline of Final Research Achievements

In these days, people post geo-social data with time and location information on social media. These posts include things that people are witnessing and they are related to real comments in the real world. Geo-spatial data including time, location and content is called geo-spatial social data. In this study, we have developed spatio-temporal data mining techniques for geo-spatial social data. These spatio-temporal data mining techniques enable us to know what is happing, when the things are happing, where the things are happing, how things are changing. We can use geo-spatial social data as an information source by using spatio-temporal data mining techniques for geo-spatial social data.

Academic Significance and Societal Importance of the Research Achievements

時空間ソーシャルデータを対象とした時空間データマイニング技術を用いることでソーシャルメディア上に投稿されている情報をリアルタイムに把握することができ,観光情報,地域振興,マーケティング,防災や危機管理の情報源として時空間ソーシャルデータを有効活用することが可能となる.また,実世界の事象を多面的に分析可能となり,ソーシャルメディアのICTへの利活用に新しいイノベーションをもたらすことができる.

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (26 results)

All 2021 2020 2019 2018

All Journal Article (4 results) (of which Peer Reviewed: 3 results) Presentation (22 results) (of which Int'l Joint Research: 6 results)

  • [Journal Article] Detecting Audio Adversarial Examples for Protecting Speech-to-Text Transcription Neural Network2021

    • Author(s)
      Keiichi Tamura, Akitada Omagari, Hajime Ito, Shuichi Hashida
    • Journal Title

      International Journal of Computational Intelligence Studies

      Volume: Vol.10, Nos. 2/3 Pages: 161-180

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Multi-Channel MHLFを用いた時系列データの分類手法2020

    • Author(s)
      橋田 修一,田村 慶一
    • Journal Title

      情報処理学会論文誌 数理モデルとその応用(TOM)

      Volume: Vol.13, No.2 Pages: 22-35

    • NAID

      170000183279

    • Related Report
      2020 Annual Research Report 2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Classifying Tweets using Convolutional Neural Networks with Multi-Channel Distributed Representation2019

    • Author(s)
      Shuichi Hashida, Keiichi Tamura, Tatsuhiro Sakai
    • Journal Title

      IAENG International Journal of Computer Science

      Volume: Vol. 46, No. 1 Pages: 68-75

    • Related Report
      2018 Research-status Report
  • [Journal Article] Time series classification using MACD-histogram-based recurrence plot2018

    • Author(s)
      Keiichi Tamura; Takumi Ichimura
    • Journal Title

      International Journal of Computational Intelligence Studies

      Volume: Vol.7 No.3/4 Issue: 3/4 Pages: 192-213

    • DOI

      10.1504/ijcistudies.2018.096188

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Detecting Adversarial Examples for Time Series Classification and its Performance Evaluation2021

    • Author(s)
      Jun Teraoka and Keiichi Tamura
    • Organizer
      KES-IDT2021
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 深層学習を用いたマルチラベル分類に基づく災害画像分類2021

    • Author(s)
      山本 愛海,田村 慶一
    • Organizer
      電子情報通信学会2021年総合大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] 蒸留を用いた時系列分類モデルMC-MHLFの圧縮2021

    • Author(s)
      玄行 朱里,田村 慶一
    • Organizer
      情報処理学会第83回全国大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] (n, m)-Layer MC-MHLF: Deep Neural Network for Classifying Time Series2020

    • Author(s)
      Keiichi Tamura and Shuichi Hashida
    • Organizer
      2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 時系列データ分類問題に対する敵対的サンプルの検出手法2020

    • Author(s)
      寺岡 純, 田村 慶一
    • Organizer
      2020 IEEE SMC Hiroshima Chapter若手研究会
    • Related Report
      2020 Annual Research Report
  • [Presentation] セル結合判定の順序付けに基づくCDBSCANアルゴリズムの高速化2020

    • Author(s)
      三木 直人,酒井達弘,田村 慶一
    • Organizer
      電子情報通信学会2020年総合大会
    • Related Report
      2019 Research-status Report
  • [Presentation] Novel Defense Method against Audio Adversarial Example for Speech-to-Text Transcription Neural Networks2019

    • Author(s)
      Keiichi Tamura, Akitada Omagari, and Shuichi Hashida
    • Organizer
      2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Multi-Channel MHLF: LSTM-FCN using MACD-Histogram with Multi-Channel Input for Time Series Classification2019

    • Author(s)
      Shuichi Hashida, Keiichi Tamura
    • Organizer
      2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] MACD-Histogram-based Fully Convolutional Neural Networks for Classifying Time Series2019

    • Author(s)
      Shuichi Hashida, Keiichi Tamura
    • Organizer
      The 2019 6th International Conference on Control, Decision and Information Technologies (CODIT'19)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Multi-Channel MHLFを用いた時系列データの分類手法2019

    • Author(s)
      橋田 修一,田村 慶一
    • Organizer
      第126回数理モデル化と問題解決研究発表会
    • Related Report
      2019 Research-status Report
  • [Presentation] MACDヒストグラムを用いた深層学習による時系列データ分類手法2019

    • Author(s)
      橋田 修一,田村 慶一
    • Organizer
      WebDB Forum 2019
    • Related Report
      2019 Research-status Report
  • [Presentation] 超高密度気象観測データを用いた深層学習による暑さ指数の予測2019

    • Author(s)
      甲斐 健太,田村 慶一,橋田 修一
    • Organizer
      2019 IEEE SMC Hiroshima Chapter若手研究会
    • Related Report
      2019 Research-status Report
  • [Presentation] MACDヒストグラムを用いたMulti-Channel MHLFによる時系列データ分類手法2019

    • Author(s)
      橋田 修一,田村 慶一
    • Organizer
      2019 IEEE SMC Hiroshima Chapter若手研究会
    • Related Report
      2019 Research-status Report
  • [Presentation] セルベースのDBSCANのAnytimeアルゴリズム2019

    • Author(s)
      酒井達弘,田村 慶一,北上始,竹澤寿幸
    • Organizer
      第11回データ工学と情報マネジメントに関するフォーラム(DEIM2019)
    • Related Report
      2018 Research-status Report
  • [Presentation] Audio Adversarial Examplesに対する動的リサンプリング法とノイズ除去法による防御2019

    • Author(s)
      尾曲晃忠, 橋田修一,田村 慶一
    • Organizer
      情報処理学会第81回全国大会
    • Related Report
      2018 Research-status Report
  • [Presentation] ドアの開閉動作を用いたShapeletによる個人識別手法2019

    • Author(s)
      橋田修一, 田村 慶一
    • Organizer
      電子情報通信学会2019年総合大会
    • Related Report
      2018 Research-status Report
  • [Presentation] 超高密度気象観測データを用いたLSTMによる暑さ指数の予測2019

    • Author(s)
      甲斐健太, 橋田修一,田村 慶一
    • Organizer
      電子情報通信学会2019年総合大会
    • Related Report
      2018 Research-status Report
  • [Presentation] 部分系列のクラスタリングに基づく符号化を用いたCNNによる時系列データの分類手法2018

    • Author(s)
      橋田修一,田村 慶一,酒井達弘
    • Organizer
      2018 IEEE SMC Hiroshima Chapter若手研究会
    • Related Report
      2018 Research-status Report
  • [Presentation] Classifying Sightseeing Tweets using Convolutional Neural Networks with Multi-Channel Distributed Representation2018

    • Author(s)
      Shuichi Hashida, Keiichi Tamura, Tatsuhiro Sakai
    • Organizer
      2018 IEEE International Conference on Systems, Man, and Cybernetics
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 深層学習による分類に基づく観光ツイートの分析手法2018

    • Author(s)
      村上和希,橋田修一, 田村 慶一,酒井達弘
    • Organizer
      平成30年度(第69回)電気・情報関連学会中国支部連合大会
    • Related Report
      2018 Research-status Report
  • [Presentation] クラスタリングに基づく符号化手法を用いたCNNによる時系列データの分類2018

    • Author(s)
      橋田修一,田村 慶一
    • Organizer
      平成30年度(第69回)電気・情報関連学会中国支部連合大会
    • Related Report
      2018 Research-status Report
  • [Presentation] CNNによる時系列データ分類のための符号化手法とその評価2018

    • Author(s)
      橋田修一, 田村 慶一
    • Organizer
      測自動制御学会 システム・情報部門学術講演会2018
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi