The study of surface liquid phase epitaxy for the fabrication of silicon nano-structures
Project/Area Number |
18K14129
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 29020:Thin film/surface and interfacial physical properties-related
|
Research Institution | Suzuka National College of Technology |
Principal Investigator |
Nishimura Takashi 鈴鹿工業高等専門学校, その他部局等, 准教授 (10757248)
|
Project Period (FY) |
2018-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2019: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2018: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
|
Keywords | 表面融液エピタキシャル結晶成長 / シリサイド微小結晶 / 表面結晶アレイ / 表面融液 / 液相エピタキシャル結晶成長 / シリコン / 準溶融状態 / 液相エピタキシャル成長 / 鉄シリサイド / 半導体微細加工法 / 溶融凝固 / エレクトロマイグレーション / 表面微細パターニング |
Outline of Final Research Achievements |
Silicon (Si) protrusions with iron (Fe) silicide were fabricated using only the process of surface melting and solidifying. Si pieces with Fe deposition were heated at 1250 °C under a tensile stress of about 2 GPa. The surface tensile stress increased the non-uniform surface temperature distribution and the surface melted layers formed in the higher temperature area. This Si surface melting took place in the temperature below the melting point of 1414 °C for bulk of Si. Melted Si layers and Fe atoms in the higher temperature area flowed to the lower temperature area along the current direction via electromigration. When the Si piece was cooled down, the accumulated Si atoms with Fe atoms formed the protrusion with caps and internal precipitates of Fe silicide by the epitaxial growth. The size and position of the caps and the internal precipitates depended on the amount of Fe deposition and surface crystal orientation.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究ではシリサイド微小結晶を半導体シリコン表面へ形成する新技術の開発を行った.近年,シリサイドはその特徴的な光学的・電気的特性により,LEDなどの光デバイスやフィールドエミッタアレイなどの表面デバイス,CMOSゲート材などに広く応用されている.しかし製造プロセスにおいてSiとシリサイドの界面歪みを緩和するために800 ℃程度の高温加熱が必要であるために,Siプロセスを応用してシリサイドの複雑な微小結晶体を形成するのは困難であった.本研究で開発した溶融‐凝固プロセスを応用したシリサイド微小結晶アレイ構造を形成する新手法により,新規デバイス構造の開発を期待できる.
|
Report
(3 results)
Research Products
(5 results)