• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Construction of drug dose check system using machine learning technology and application to clinical practice

Research Project

Project/Area Number 18K14984
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 47060:Clinical pharmacy-related
Research InstitutionKyushu University

Principal Investigator

Nagata Kenichiro  九州大学, 大学病院, 薬剤師 (30812896)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Keywords処方チェックシステム / 機械学習
Outline of Final Research Achievements

Overdose prescription errors sometimes cause serious life-threatening adverse drug events, while underdose errors lead to diminished therapeutic effects. Therefore, it is important to detect and prevent these errors. In the present study, we used the one-class support vector machine, one of the most common unsupervised machine learning algorithms for anomaly detection, to identify overdose and underdose prescriptions.

Academic Significance and Societal Importance of the Research Achievements

本研究では,患者の年齢,体重,および薬剤の投与量を基に構築したone-class support vector machine(OCSVM)モデルが,薬剤の過量処方・過少処方の検出において有用であることが示された。また,OCSVMは他の機械学習アルゴリズム(local outlier factor,isolation forest,およびrobust covariance)の中で最も高い検出性能を有していたことからも,OCSVMの活用が,より高精度な薬剤投与量チェックシステムの開発のために有用であることが考えられた。

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (3 results)

All 2021 2020 2018

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (2 results)

  • [Journal Article] Detection of overdose and underdose prescriptions -An unsupervised machine learning approach2021

    • Author(s)
      Kenichiro Nagata, Toshikazu Tsuji, Kimitaka Suetsugu, Kayoko Muraoka, Hiroyuki Watanabe, Akiko Kanaya, Nobuaki Egashira, Ichiro Ieiri
    • Journal Title

      PLOS ONE

      Volume: 16 Issue: 11 Pages: e0260315-e0260315

    • DOI

      10.1371/journal.pone.0260315

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] 機械学習を用いた医薬品の過量・過少オーダの検出2020

    • Author(s)
      永田健一郎,辻敏和,村岡香代子,渡邊裕之,金谷朗子,江頭伸昭,家入一郎
    • Organizer
      第30回日本医療薬学会年会
    • Related Report
      2020 Research-status Report
  • [Presentation] 診療データの解析による医薬品適正使用のための注意喚起情報シートの作成と評価2018

    • Author(s)
      永田 健一郎,村岡 香代子,石田 茂,齊藤 麻美,辻 敏和,渡邊 裕之,金谷 朗子,増田 智先
    • Organizer
      第28回日本医療薬学会年会
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi