Project/Area Number |
18K18960
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 26:Materials engineering and related fields
|
Research Institution | Waseda University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
柳沢 雅広 早稲田大学, ナノ・ライフ創新研究機構, その他(招聘研究員) (20421224)
|
Project Period (FY) |
2018-06-29 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥6,240,000 (Direct Cost: ¥4,800,000、Indirect Cost: ¥1,440,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
|
Keywords | プラズモニクス / ラマン分光法 / 表面増強ラマン分光 / 引張り試験 / 材料破壊 / ゴム / 表面増強ラマン散乱分光 / オペランド計測 / 表面増強ラマン散乱光 / 材料破壊過程 / 表面増強ラマン散乱 / オペランド解析 / 複合計測 |
Outline of Final Research Achievements |
Purpose of the study was development of new tools with capability to analyze mechanical deformation and fracture of materials with mechanical properties and molecular structure. Developed tool was composed of multi beam SERS (Surface-Enhanced Raman Scattering) spectrometer with plasmonic sensor and tension tester. Operando measurement in tensile test was carried out, i.e. kinetic changes of molecular structure mapping in plain, fracture propagation, and so on. Multi-scale from nanometer range to millimeter scale was analyzed in materials. Rubber material was examined for tensile test. The following results were gained. Although surface layer revealed plastic deformation, deep component showed elastic deformation. Operando observation in crack propagation showed that double bond in rubber molecules was decomposed at around fracture position.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の成果は、引張り試験における化学構造、特に表面近傍と内部および切断破壊までの、面内方向におけるナノスケールでの化学構造分布の動的測定に世界で初めて成功したことである。また本研究を通して亀裂部での分子の分解反応を直接観察できたことで、本手法が材料破壊のメカニズム解明にむけての強力なツールであることを実証した。試験時における機械物性とナノスケールでの面内化学構造が同時に測定できることは、引張り試験に限らず、摩擦・摩耗・潤滑などのトライボロジー分野にも有用であり、高強度・高耐久性・高機能性材料の開発に貢献できると期待され、省エネルギー社会実現の観点からも社会的意義はきわめて大きい。
|