Special linear systems on compact Riemann surfaces
Project/Area Number |
19540186
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Basic analysis
|
Research Institution | Yamaguchi University |
Principal Investigator |
KATO Takao Yamaguchi University, 名誉教授 (10016157)
|
Co-Investigator(Kenkyū-buntansha) |
MASUMOTO Makoto 山口大学, 理工学研究科, 教授 (50173761)
YANAGIHARA Hiroshi 山口大学, 理工学研究科, 准教授 (30200538)
HOMMA Masaaki 神奈川大学, 工学部, 教授 (80145523)
OHBUCHI Akira 徳島大学, 大学院・ソシオ・アーツ・アンド・サイエンス研究部, 教授 (10211111)
KASHIWAGI Yoshimi 山口大学, 経済学部, 教授 (00152637)
|
Co-Investigator(Renkei-kenkyūsha) |
MATSUNO Yoshimasa 山口大学, 理工学研究科, 教授 (30190490)
WATANABE Tadashi 山口大学, 教育学部, 教授 (10107724)
|
Project Period (FY) |
2007 – 2009
|
Project Status |
Completed (Fiscal Year 2009)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2009: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2008: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2007: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 閉リーマン面 / 代数曲線 / gonality / bielliptic / hyperelliptic / 誤り訂正符号理論 |
Research Abstract |
One of main themes of the study of compact Riemann surfaces is a classification problem of Riemann surfaces using the existence of meromorphic function on them and conformal invariants. We have studied this theme and the code theory as an application of it. For conformal invariants on Riemann surfaces, we have dealt with and gotten results on the gonality and the smallest degree of Riemann surfaces represented as a projective plane curve. For the coding theory, we study the algebraic geometric coding theory. We have gotten results concerning the Weierstrass n-tuple for suitable linear systems on Riemann surfaces.
|
Report
(4 results)
Research Products
(25 results)