グロタンディークデッサンと悲合同的タイヒミュラー被覆の数論
Project/Area Number |
19654005
|
Research Category |
Grant-in-Aid for Challenging Exploratory Research
|
Allocation Type | Single-year Grants |
Research Field |
Algebra
|
Research Institution | Okayama University |
Principal Investigator |
中村 博昭 Okayama University, 大学院・自然科学研究科, 教授 (60217883)
|
Co-Investigator(Kenkyū-buntansha) |
鳥居 猛 岡山大学, 大学院・自然科学研究科, 准教授 (30341407)
鈴木 武史 岡山大学, 大学院・自然科学研究科, 准教授 (30335294)
吉野 雄二 岡山大学, 自然科学研究科, 教授 (00135302)
山田 裕史 岡山大学, 大学院・自然科学研究科, 教授 (40192794)
松崎 克彦 岡山大学, 大学院・自然科学研究科, 教授 (80222298)
廣川 真男 岡山大学, 大学院・自然科学研究科, 教授 (70282788)
石川 佳弘 岡山大学, 大学院・自然科学研究科, 助教 (50294400)
|
Project Period (FY) |
2007 – 2009
|
Project Status |
Completed (Fiscal Year 2009)
|
Budget Amount *help |
¥3,200,000 (Direct Cost: ¥3,200,000)
Fiscal Year 2009: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2008: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2007: ¥1,400,000 (Direct Cost: ¥1,400,000)
|
Keywords | 反復積分 / 関数等式 / 高次対数関数 / ガロア群 / 国際研究者交流 / 楕円曲線 / グロタンディーク・デッサン / エル進反復積分 / グロタンディーク・タイヒミュラー群 / Belyi関数 / フランス |
Research Abstract |
昨年度に基礎を確立した複素および1進の反復積分の関数等式の導出法(Wojtkowiak氏との共同研究)を延長して,具体的な実例計算をさらに検証した.とりわけ古典的な高次対数関数について知られている分布関係式(distribution relation)の1進版を導出することに成功した.分布関係式は,様々な特殊値を代入することで,高次対数関数の特殊値の間に成立する様々な関係式を組織的に生み出す重要なものであり,1進の場合にも並行してガロア群上の関数族(1-コチェイン)を統御する要となることが期待されるが,前年度までに得られた関数等式との整合性についても検証を行った.8月にケンブリッジのニュートン数理科学研究所で行われた研究集会"Anabelian Geometry"において口頭発表を行った.このときの講演に参加していたH.Gangl氏,P.Deligne氏から今後の研究指針を考える上で有用になると思われるコメントを頂戴することが出来た.また分布関係式の低次項の解消問題に関連して,有理的な道に沿った解析接続の概念にっいて考察を進める必要が生じた.こうしたテーマに関連して研究分担者の鳥居氏には,有理ホモトピー論に関する情報収集を担当していただき,また研究分担者の鈴木氏には,量子代数やKZ方程式との関連で組みひも群の数理についての情報収集を担当していただいた.以上の研究成果の一部は,共同研究者のWojtkowiak氏と協力して,"On distribution formula of complex and 1-adic polylogarithms"という仮題の草稿におおよその骨子をまとめたが,まだ完成に至っていない.周辺にやり残した問題(楕円ポリログ版など)もあり,これらについて一定の目処をつけてから公表までの工程を相談する予定になっている.
|
Report
(3 results)
Research Products
(6 results)