• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Geometry of loop spaces and representation theory

Research Project

Project/Area Number 19H01782
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionKyoto University

Principal Investigator

Kato Syu  京都大学, 理学研究科, 教授 (40456760)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥17,160,000 (Direct Cost: ¥13,200,000、Indirect Cost: ¥3,960,000)
Fiscal Year 2023: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2022: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2021: ¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2019: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Keywords半無限旗多様体 / 半無限Schubert多様体 / 半無限Richardson多様体 / 大域Weyl加群 / 量子K群 / アフィン・グラスマン多様体 / 孤空間 / 安定写像 / affine Grassmann多様体 / ループ空間 / 反無限旗多様体 / アフィン・リー代数 / ヘッケ代数 / Frobenius分裂性 / 有理特異点 / コストカ関数 / 量子群 / Schubert多様体 / Richardson多様体 / Borel-Weil-Bottの定理 / 量子ループ代数 / 量子クーロン枝 / Demazure指標公式 / 非対称Macdonald多項式 / 代数的ループ空間 / アフィン・ヘッケ代数
Outline of Research at the Start

表現論とはある対称性がどのような実現を持ち、また複数の実現の間にどのような関係が存在するかを研究する分野である。その中での幾何学的見地の重要性は同一の幾何学的構造(多様体とその上の構造物)の異なる解釈が異なる文脈で生まれた対称性や理論たちの間を結ぶ架け橋を提供してきたことが大きい。本研究ではそこで出現する多様体(たち)の代数的ループ空間を用いて幾何学的表現論の構成を強化し、古典的な枠組みでは理解できなかった表現論の構造を統制できる枠組みを構築することを試みる。また同時に既存の研究の示唆する表現論と数理物理などとの間にある関係などをより深く理解することを目指す。

Outline of Final Research Achievements

We have established basic theory of semi-infinite flag manifolds, that contains a major portion of standard results known in the setting of usual flag manifolds. During this process, we have spelled out deep relationship between representation theory of affine Lie algebras, that enables us to tell what the semi-infinite flag manifolds is and why one can expect nice properties about them. In addition, we have established the relation among the K-group of semi-infinite flag manifolds, the quantum K-group of flag manifolds, and the K-group of affine Grassmannians.

Academic Significance and Societal Importance of the Research Achievements

本研究の学術的意義は半無限旗多様体およびその部分多様体の構造がどのようなものであるかを明確に描き出したこと、およびそれにより半無限旗多様体と旗多様体のループ空間、そして旗多様体への射影直線からの写像の空間の構造との関係を明確化したことにある。これにより表現論分野を超えて意味を持つ新しい対象を提出したと言える。特にその応用として量子K群における重要な予想をいくつか解決した。

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Annual Research Report
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • Research Products

    (25 results)

All 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (5 results) Journal Article (7 results) (of which Int'l Joint Research: 3 results,  Open Access: 2 results,  Peer Reviewed: 6 results) Presentation (11 results) (of which Int'l Joint Research: 11 results,  Invited: 9 results) Remarks (2 results)

  • [Int'l Joint Research] Skoltech Institute/Higher School of Economics(ロシア連邦)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] Virginia Tech/Rutgers University(米国)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] Skoltech Institute/Higher School of Economics(ロシア連邦)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] Virginia Tech.(米国)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] Paris VII(フランス)

    • Related Report
      2019 Annual Research Report
  • [Journal Article] The formal model of semi-infinite flag manifolds2023

    • Author(s)
      Kato Syu
    • Journal Title

      Proceedings of the International Congress of Mathematicians

      Volume: III Pages: 1600-1622

    • DOI

      10.4171/icm2022/25

    • ISBN
      9783985470617, 9783985475612
    • Related Report
      2023 Annual Research Report
    • Open Access
  • [Journal Article] Symmetric functions and Springer representations2022

    • Author(s)
      Syu Kato
    • Journal Title

      Indag. Math. (N.S.)

      Volume: 33 Issue: 1 Pages: 255-278

    • DOI

      10.1016/j.indag.2021.12.010

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Frobenius splitting of Schubert varieties of semi-infinite flag manifolds2021

    • Author(s)
      Syu Kato
    • Journal Title

      Forum of Mathematics, Pi

      Volume: 9

    • DOI

      10.1017/fmp.2021.5

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Nonsymmetric Rogers-Ramanujan sums and thick Demazure modules2020

    • Author(s)
      Syu Kato and Ivan Cherednik
    • Journal Title

      Advances in Mathematics

      Volume: 374 Pages: 107335-107335

    • DOI

      10.1016/j.aim.2020.107335

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Equivariant K-theory of semi-infinite flag manifolds and Pieri-Chevalley formula2020

    • Author(s)
      加藤周、内藤聡、佐垣大輔
    • Journal Title

      Duke Mathematical Journal

      Volume: accepted

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Representation theoretic realization of non-symmetric Macdonald polynomials at infinity2019

    • Author(s)
      Evgeny Feigin, 加藤周, Ievgen Makedonskyi
    • Journal Title

      Journal fuer die reine und angewandte Mathematik

      Volume: accepted Issue: 764 Pages: 181-216

    • DOI

      10.1515/crelle-2019-0011

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Appendix to Syu Kato and Sergey Loktev: A Weyl module stratification of integrable representations2019

    • Author(s)
      Ryosuke Kodera
    • Journal Title

      Communications in Mathematical Physics

      Volume: 368 Issue: 1 Pages: 113-141

    • DOI

      10.1007/s00220-019-03327-5

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] A geometric realization of Catalan functions2023

    • Author(s)
      Syu Kato
    • Organizer
      Representation Theory of Hecke Algebras and Categorification
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Higher level BGG reciprocity for current algebras2023

    • Author(s)
      Syu Kato
    • Organizer
      NCTS-Kyoto Mathematics Symposium
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Higher level BGG reciprocity for current algebras2023

    • Author(s)
      Syu Kato
    • Organizer
      Representation Theory, Combinatorics and Geometry
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] A geometric realization of Catalan functions2023

    • Author(s)
      Syu Kato
    • Organizer
      Representation theory and geometry of loop spaces.
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Loop spaces of flag manifolds, quantum geometry, and representation theory2023

    • Author(s)
      Syu Kato
    • Organizer
      Representation theory and geometry of loop spaces.
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] The formal model of semi-infinite flag manifolds2022

    • Author(s)
      Syu Kato
    • Organizer
      International Congress of Mathematician 2022 (online)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Geometry of semi-infinite flag manifolds2021

    • Author(s)
      Syu Kato
    • Organizer
      Combinatorial Algebraic Geometry
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Quantum K-groups of flag manifolds via semi-infinite flag manifolds2020

    • Author(s)
      Syu Kato
    • Organizer
      Representation Theory, Thematic trimester program on Representation theory
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Equivariant quantum K-groups of partial flag manifolds2019

    • Author(s)
      Syu Kato
    • Organizer
      Verlinde algebra and Grassmannians
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Equivariant quantum K-groups of partial flag manifolds2019

    • Author(s)
      Syu Kato
    • Organizer
      Mini-courses and lectures: Quiver varieties
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On the definition of semi-infinite flag manifolds and applications2019

    • Author(s)
      Syu Kato
    • Organizer
      Degeneration Techniques in Representation Theory
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Remarks]

    • URL

      http://www.math.kyoto-u.ac.jp

    • Related Report
      2023 Annual Research Report
  • [Remarks]

    • URL

      http://www.math.kyoto-u.ac.jp/~syuchan

    • Related Report
      2020 Annual Research Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi