Liquid crystal dynamics by ultrasound and its application to high-speed optical measurements
Project/Area Number |
19H02056
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 18040:Machine elements and tribology-related
|
Research Institution | Doshisha University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
松川 真美 同志社大学, 理工学部, 教授 (60288602)
江本 顕雄 徳島大学, ポストLEDフォトニクス研究所, 特任講師 (80509662)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥16,510,000 (Direct Cost: ¥12,700,000、Indirect Cost: ¥3,810,000)
Fiscal Year 2021: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2020: ¥8,060,000 (Direct Cost: ¥6,200,000、Indirect Cost: ¥1,860,000)
Fiscal Year 2019: ¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
|
Keywords | 超音波 / 液晶 / レンズ / 光計測 / 手振れ補正 / 光デバイス |
Outline of Research at the Start |
スキャナの様な一般的な光走査型光学機器では,アクチュエータによってミラーを回転・移動させて光を走査するが,走査速度および走査範囲の限界はこの機械的性能によって決定される.本研究では,超音波によって液晶分子の配向を変化させることにより,光を空間的・時間的に高速制御する技術,およびそれを用いた高機能光音響デバイスについて検討する.第一に,超音波が液晶配向に与える影響について,その物理メカニズムを明らかにする.第二に,本技術を応用した光デバイスを開発する.第三に,本デバイスを利用して高速光計測技術へ展開する.
|
Outline of Final Research Achievements |
In this study, we investigated a method to control the molecular orientation of liquid crystal and the application to optical measurement techniques. As the results, the relationship between the ultrasound vibration and the liquid crystal molecular orientation was evaluated quantitatively. A method to control the lens aperture and three-dimensional focusing including the radial direction of the lens were realized. Ultrasound gel lenses using a combination of ultrasound and viscoelastic transparent materials, that can control the focal point by changing its shape, were also developed.
|
Academic Significance and Societal Importance of the Research Achievements |
カメラやスキャナの様な光学デバイスではレンズやミラーの様な光を屈折,集光,反射する光学素子を移動,回転させることによって光を時間的,空間的に制御している.今後スマートフォンなどの電子デバイスの小型・薄型化や車載用モニタリングデバイスへの応用を考えた場合,これらの機械的可動部の存在はデメリットと言える.本研究では光学素子の位置を動かすことなく,その屈折率分布を超音波と液晶を用いて高速に変化することにより,同じ光学的機能をより小型・薄型な構造で実現する手法について検討した.
|
Report
(4 results)
Research Products
(33 results)