• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of algorithms for manufacture informatics and its evaluation in steel industry

Research Project

Project/Area Number 19H04176
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 61030:Intelligent informatics-related
Research InstitutionKyushu University

Principal Investigator

saigo hiroto  九州大学, システム情報科学研究院, 准教授 (90586124)

Co-Investigator(Kenkyū-buntansha) 齊藤 敬高  九州大学, 工学研究院, 准教授 (80432855)
Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥16,120,000 (Direct Cost: ¥12,400,000、Indirect Cost: ¥3,720,000)
Fiscal Year 2022: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2021: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2020: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2019: ¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
Keywords機械学習 / 異常検知 / 鉄鋼生産 / 外挿予測 / 転移学習 / ガウス過程 / 多相融体の粘度 / 深層学習 / 鉄鋼製造 / 疎性非線形モデル / 操業データ / 特徴選択 / 回帰 / ベイズ最適化 / CNN / 解釈可能性
Outline of Research at the Start

本研究計画では次の3つのテーマに取り組む;【1】操業時の異常検知問題、【2】マルチタスク学習による 高温状態の粘度予測、【3】高コストな問題における実験計画。
このうち、【1】は代表者が単独で取り組むものであるが、【2】と【3】については、分担者が実験で得たデータを基に代表者の研究を進めるものである。このため、数ヶ月に1回程度、あるいは必要に応じてミーティングを行う予定である。

Outline of Final Research Achievements

In the "Anomaly Detection in Blast Furnaces" problem, we have developed approaches using unsupervised learning based on the work of Itakura et al. (IBIS2022), and supervised learning based on the work of Kizaki (IBIS2021). In the supervised learning approach using CNN, we have confirmed that utilizing data from 5 to 15 minutes prior leads to improved accuracy.

We have also developed a method for "Viscosity Prediction of High-Temperature States through Multi-Task Learning" as described in the study by Saigo et al. (Scientific Reports, 2022). In addition to robust extrapolation prediction, we have proposed a transfer learning method that leverages room temperature experimental data for high-temperature experiments.

Academic Significance and Societal Importance of the Research Achievements

教師なし学習は人手により教師ラベル作成の労力を減らすことを可能とする。現実世界の多くのデータは教師ラベルがないか、もしくはそのラベル付けに多大なコストが必要な場合が多いため、現実社会での実装において重要なテーマである。
一方で、機械学習手法の多くは過去のデータから学習し、その評価を交差検証に頼っているため、ロバストな外挿予測問題への取り組みは学術的に重要である。本研究では流体力学という現実の問題への解決策を示したものであり、同種の問題に適用可能である。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • Research Products

    (24 results)

All 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (4 results) Journal Article (8 results) (of which Int'l Joint Research: 8 results,  Peer Reviewed: 8 results,  Open Access: 5 results) Presentation (12 results) (of which Int'l Joint Research: 7 results)

  • [Int'l Joint Research] Michigan Technological University(米国)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] Michigan Technological University(米国)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] Michigan Technological University(米国)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] Wichita State University/North Carolina A&T State University(米国)

    • Related Report
      2019 Annual Research Report
  • [Journal Article] pLMSNOSite: an ensemble-based approach for predicting protein S-nitrosylation sites by integrating supervised word embedding and embedding from pre-trained protein language model2023

    • Author(s)
      Pratyush, P., Pokharel, S., Saigo, H., KC.D.B.
    • Journal Title

      BMC Bioinform.

      Volume: 24(1) Issue: 1

    • DOI

      10.1186/s12859-023-05164-9

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Einstein-Roscoe regression for the slag viscosity prediction problem in steelmaking2022

    • Author(s)
      Saigo, H., Bahadur, K.C.D, Saito, N.
    • Journal Title

      Scientific Reports

      Volume: 12 Issue: 1

    • DOI

      10.1038/s41598-022-10278-w

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Sparse nonnegative interaction models2021

    • Author(s)
      Takayanagi, M., Tabei, Y., Suzuki, E., Saigo, H
    • Journal Title

      IEEE Access

      Volume: 9 Pages: 109994-110005

    • DOI

      10.1109/access.2021.3099473

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Topic modeling for sequential documents based on hybrid inter-document topic dependency2021

    • Author(s)
      Li, W. and Saigo, H. and Tong, E. and Suzuki, E.
    • Journal Title

      Journal of Intelligent Information Systems

      Volume: 56(3) Pages: 453-458

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] DeepSuccinylSite: a deep learning based approach for protein succinylation site prediction2020

    • Author(s)
      Thapa, N., Chaudhari, M., McManus, S., Roy, K., Newman, R.H., Saigo, H., KC, D.B.
    • Journal Title

      BMC Bioinformatics

      Volume: 21(Suppl 3)

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] DeepRMethylSite: a deep learning based approach for prediction of arginine methylation sites in proteins2020

    • Author(s)
      Chaudhari, M., Thapa, N., S., Roy, K., Newman, R.H., Saigo, H., KC, D.B.
    • Journal Title

      Molecular Omics

      Volume: 16

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] RF-MaloSite and DL-Malosite: Methods based on random forest and deep learning to identify malonylation sites2020

    • Author(s)
      Al-barakati, H.J., Thapa, N., Saigo, H., Roy, K., Newman, R.H., Bahadur, K.C.D.
    • Journal Title

      Computational and Structural Biotechnology Journal

      Volume: 18 Pages: 852-860

    • DOI

      10.1016/j.csbj.2020.02.012

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] RF-GlutarySite: a random forest predictor for glutarylation sites2019

    • Author(s)
      Al-barakati, H.J., Saigo, H., Newman, R.H., Bahadur, K.C.D.
    • Journal Title

      Molecular Omics,

      Volume: 15 Issue: S3 Pages: 189-204

    • DOI

      10.1186/s12859-020-3342-z

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] 機械学習・深層学習を用いた高炉の教師なし異常検知2022

    • Author(s)
      板倉健大; 西郷浩人
    • Organizer
      第25回情報論的学習理論ワークショップ
    • Related Report
      2022 Annual Research Report
  • [Presentation] Automatically mining relevant variable interactions via sparse Bayesian learning; International Conference of Pattern Recognition2021

    • Author(s)
      Yafune, R., Sakuma, D., Tabei, Y., Saito, N., Saigo, H.
    • Organizer
      International Conference for Pattern Recognition (ICPR)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 深層学習を利用した高炉内の異常検知2021

    • Author(s)
      木崎亮介, 西郷浩人
    • Organizer
      第24回情報論的学習理論ワークショップ(IBIS)
    • Related Report
      2021 Annual Research Report
  • [Presentation] 深層学習を利用した高炉内の異常検知2021

    • Author(s)
      木崎亮介, 西郷浩人
    • Organizer
      人工知能学会 第116回人工知能基本問題研究会(SIG-FPAI)
    • Related Report
      2021 Annual Research Report
  • [Presentation] Automatically mining relevant variable interactions via sparse Bayesian learning; International Conference of Pattern Recognition2021

    • Author(s)
      Yafune, R., Sakuma, D., Tabei, Y., Saito, N., Saigo, H.
    • Organizer
      International Conference of Pattern Recognition (ICPR2020)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Context-Aware Latent Dirichlet Allocation for Topic Segmentation2020

    • Author(s)
      Li, W., Matsukawa, T., Saigo, H., Suzuki
    • Organizer
      Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2020)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A Sparse Bayesian Approach to Combinatorial Feature Selection and Its Applications to Biological Data2020

    • Author(s)
      Ryoichiro Yafune, Daisuke Sakuma, Yasuo Tabei, Noritaka Saito, Einoshin Suzuki and Hiroto Saigo
    • Organizer
      ICBBB2020
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Bayesian Optimization for Sequence Data2020

    • Author(s)
      Kohei Oyamada and Hiroto Saigo
    • Organizer
      ICBBB2020
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] DeepSuccinylSite: a deep learning based approach for protein succinylation site prediction2019

    • Author(s)
      Thapa, N., Chaudhari, M., McManus, S., Roy, K., Newman, R.H., Saigo, H., KC, D.B.
    • Organizer
      Joint GIW/ABACBS-2019 Bioinformatics Conference
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] SVM-GlutarySite: A Support Vector Machine-Based Prediction of Glutarylation Sites from Protein Sequences2019

    • Author(s)
      Hussam Albarakati, Hiroto Saigo, Robert Newman and Dukka KC
    • Organizer
      MCBIOS2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] アイテムセットを用いたスパースベイズ学習2019

    • Author(s)
      矢船 僚一朗、西郷 浩人
    • Organizer
      人工知能学会全国大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 変数間作用を考慮した非負スパースモデルの正則化経路探索2019

    • Author(s)
      高柳 未来、田部井 靖生、西郷 浩人
    • Organizer
      人工知能学会全国大会
    • Related Report
      2019 Annual Research Report

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi