• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Weyl groupoids, generalized quantum groups, and related graph theory

Research Project

Project/Area Number 19K03420
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionUniversity of Toyama

Principal Investigator

YAMANE Hiroyuki  富山大学, 学術研究部理学系, 教授 (10230517)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywordsホップ代数 / スーパーリー代数 / ワイル亜群 / 一般化された量子群 / ケイリーグラフ / ハミルトン閉路 / リースーパー代数 / コクセター亜群 / ニコルス代数
Outline of Research at the Start

単純リー群や単純リー代数Gの表現論ではそのワイル群W(G)が有効に使われる。単純スーパーリー代数Sにはワイル群W(S0)を含むワイル亜群W(S)があらわれる。研究代表者たちは10年以上にわたってワイル亜群W(χ)の研究およびW(χ)を用いて一般化された量子群U(χ)の研究をしてきた。とくにW(χ)の松本の定理の発見を行い、U(χ)の有限次元既約表現の分類などを行った。今後はW(χ)のグラフ理論の側面、U(χ)の表現論の指標公式などを研究する。

Outline of Final Research Achievements

The important fact concerning the quantum groups is that the universal R-matrix of a quantum group is constructed by using the quantum double construction. The generalized quantum groups are the Hopf algebras defined by using the quantum double construction. In 2015, Cuntz-Heckenberger classified the finite Weyl groupoids. In the period of this fund, Yamane showed that the Cayley graph of the Weyl groupoid of a generalized quantum group has a Hamitonian cycle, and Batra-Yamane constructed some central elements of the generalized quantum groups.

Academic Significance and Societal Importance of the Research Achievements

一般化された量子群は1980年代に導入された量子群が普遍R行列を持つという特性に注目して一般化した概念である。従来の量子群以外の多数の例外的な一般化された量子群が存在する。一般化された量子群を研究することによって新しい物理的なモデルを得る事が期待される。さらには、一般化された量子群に関連して導入されたワイル亜群も多数あるのでそのケイリーグラフも多数あり、これらは性質の良いグラフだと考えられるのでその研究がグラフ理論に貢献できると期待される。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (19 results)

All 2022 2021 2020 2019 Other

All Int'l Joint Research (1 results) Journal Article (3 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 3 results) Presentation (12 results) (of which Int'l Joint Research: 5 results,  Invited: 6 results) Remarks (2 results) Funded Workshop (1 results)

  • [Int'l Joint Research] Shanghai University(中国)

    • Related Report
      2022 Annual Research Report
  • [Journal Article] On generators and defining relations of quantum e superalgebra Uq({\hat{sl}}_{m|n})2022

    • Author(s)
      Lin Hongda、Yamane Hiroyuki、Zhang Honglian
    • Journal Title

      Journal of Algebra and Its Applications

      Volume: - Issue: 01

    • DOI

      10.1142/s021949882450021x

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Typical irreducible characters of generalized quantum groups2020

    • Author(s)
      Yamane Hiroyuki
    • Journal Title

      Journal of Algebra and Its Applications

      Volume: 20 Issue: 01 Pages: 2140014-2140014

    • DOI

      10.1142/s0219498821400144

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Natural elements of center of generalized quantum groups2020

    • Author(s)
      Batra Punita、Yamane Hiroyuki
    • Journal Title

      Contemporary Mathematics

      Volume: 751 Pages: 19-31

    • DOI

      10.1090/conm/751/15114

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] スーパー量子群の普遍 R 行列について2022

    • Author(s)
      山根 宏之
    • Organizer
      Toyama Workshop on Quantum Groups and Related Topics
    • Related Report
      2022 Annual Research Report
  • [Presentation] Hamiltonian cycles for Weyl groupoids2022

    • Author(s)
      山根 宏之
    • Organizer
      組合せ論的表現論における最近の展開
    • Related Report
      2022 Annual Research Report
  • [Presentation] On typical irreducible character formulas of generalized quantum groups2021

    • Author(s)
      Hiroyuki Yamane
    • Organizer
      2021年度研究集会「代数的Lie理論および表現論」
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] ワイル亜群のケーレーグラフのハミルトン閉路2021

    • Author(s)
      山根 宏之
    • Organizer
      第 36 回 リー代数サマーセミナー (onlne)
    • Related Report
      2021 Research-status Report
  • [Presentation] 一般化された量子群のワイル亜群のケイリーグラフのハミルトン閉路2021

    • Author(s)
      山根 宏之
    • Organizer
      日本数学会2021年度秋季総合分科会 無 限 可 積 分 系
    • Related Report
      2021 Research-status Report
  • [Presentation] Representation theory of generalized quantum algebras using Weyl groupoids2021

    • Author(s)
      山根 宏之
    • Organizer
      RIMS研究集会「組合せ論的表現論および関連分野との連携」
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 一般化された量子群の典型的既約指標につい2020

    • Author(s)
      山根宏之
    • Organizer
      2020 日本数学会 年会
    • Related Report
      2019 Research-status Report
  • [Presentation] Generalized quantum groups with Kharchenko PBW theorem2019

    • Author(s)
      山根宏之
    • Organizer
      Algebraic Lie Theory and Representation Theory (ALTReT2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Skew centerss and generaized quantum groups with Kharchenko PBW Theorem2019

    • Author(s)
      山根宏之
    • Organizer
      The International Conference on Lie Theory and Representations 2019 (Department of Mathematics, Shanghai University,China)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] ワイル亜群について2019

    • Author(s)
      山根宏之
    • Organizer
      第35回リー代数サマーセミナー
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 一般化された量子群の典型的既約指標2019

    • Author(s)
      山根宏之
    • Organizer
      第1回 岩手代数学セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Typical character for the generalized quantum groups2019

    • Author(s)
      山根宏之
    • Organizer
      The 2nd Meeting for Study of Number theory, Hopf algebras and related topics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] Hiroyuki Yamane Homepage

    • URL

      http://www3.u-toyama.ac.jp/hiroyuki/

    • Related Report
      2022 Annual Research Report 2021 Research-status Report 2020 Research-status Report
  • [Remarks] http://www3.u-toyama.ac.jp/hiroyuki/

    • Related Report
      2019 Research-status Report
  • [Funded Workshop] The 2nd Meeting for Study of Number theory, Hopf algebras and related topics2020

    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi