• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Interrelation between quantum and contact topology via braid group methods

Research Project

Project/Area Number 19K03490
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionKyoto University

Principal Investigator

伊藤 哲也  京都大学, 理学研究科, 教授 (00710790)

Co-Investigator(Kenkyū-buntansha) 大槻 知忠  京都大学, 数理解析研究所, 教授 (50223871)
Project Period (FY) 2019-04-01 – 2025-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords正組みひも / 結び目 / 低次元トポロジー / 正結び目 / 矯飾的手術 / 矯飾的交差 / 組みひも群 / オープンブック分解 / 接触幾何 / 量子トポロジー
Outline of Research at the Start

量子トポロジー・接触トポロジーともに現在活発に研究され、進展が著しい3次元のトポロジーの研究分野であるが、それぞれの分野の課題や未解決問題や目標は大きく異なり、二つの研究分野間の交流は活発とは言えない。近年、二つの分野に相互関連や応用があることを示唆する結果が得られており、二つの分野に密接な関連があることが期待される。このような現状を踏まえて、接触幾何の情報を量子不変量あるいはそれに関連した不変量から得ること、また逆に量子不変量に関連する情報を接触幾何の手法や情報から得ることを研究し、二つのトポロジーの分野の統合を目指す。

Outline of Annual Research Achievements

正組みひもの閉包として現れる絡み目を正組みひも結び目と呼ぶ。正組みひも絡み目は量子トポロジーにおいて、特別な性質を持つ重要な対象である。また、一方で正組みひも結び目は自然に標準的な接触三次元球面内のルジャンドル結び目としてみなせることなど、接触幾何の観点からみても重要な対象である。そのような背景から、本年度は正組みひも絡み目の性質についての研究を継続して行った。
結び目理論において、結び目の不変量や各種性質がサテライト構成、特にケーブル化に対しどのようにふるまうか、ということは基本的な問題であり、正組みひも絡み目のサテライト構成についての考察を行った。正組みひも結び目については、適切な正組みひもパターンによるサテライト構成が正組みひも絡み目となることは容易にわかる。組みひも群についての理論や手法を駆使することで、組みひもが全ねじれを含むという仮定の下で、その逆が成り立つことを示し、サテライト結び目となるような全ねじれを含む正組みひも結び目の特徴づけを与えた。
この系として、自明な結び目や三葉結び目といった結び目たちが適切なケーブル化操作が(全ねじれを含む)正組みひも結び目となる結び目として特徴づけられることを示した。
また、関連した研究として正二橋結び目についての鏡像的矯飾的手術の研究を行い、正二橋結び目についての鏡像的矯飾的手術は知られているもの((2,k) トーラス結び目の鏡像的矯飾的手術)に限ることの証明を与えた。また、デーン手術により自明化される結び目群の元の構造についての研究や群の一般化ねじれ元のなども行った。これらの研究は、直接研究課題に現れているものではないが、研究課題の研究に触発されて行った研究である。

Current Status of Research Progress
Current Status of Research Progress

3: Progress in research has been slightly delayed.

Reason

全ねじれを含む正組みひも絡み目の性質については十分に満足いく成果が得られた。今年度の研究成果は組みひも群の手法、とくに組みひも群の代数的側面(Garside理論)・力学系的側面(Nielsen-Thurston分類)・幾何的側面(Braid foliation理論)のすべてを組み合わせたものであり、組みひも群の理論の集大成といえる。

一方で、今年度の成果は純粋な位相幾何的なものであり、研究課題であった量子トポロジー・接触トポロジーとの関連を見出すということについては、当初の目標については未達成であると認めざる得ない。

Strategy for Future Research Activity

本研究に際しては、これまでの研究を通して正組みひも絡み目の量子不変量の性質について、いくつかの結果を得られている。今年度の研究により、正組みひも結び目の位相的な性質についての理解が進んだことから、最後に正組みひも結び目について接触幾何の側面からの研究や理解を深めることで、これまでの研究成果と合わせて量子トポロジーと接触トポロジーの何らかの面白い対応や関連を見出すことを目標としたい。

とくに、一般の正組みひも結び目に比べ、全ねじれを含む正組みひも結び目はさらに強い性質、特に接触幾何の観点においてもさらに良い性質を持つことが期待できるため、全ねじれを含む正組みひも結び目について、接触幾何との関連を主眼に詳細に調べていく。

Report

(5 results)
  • 2023 Research-status Report
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (31 results)

All 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (1 results) Journal Article (22 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 22 results,  Open Access: 3 results) Presentation (7 results) (of which Int'l Joint Research: 6 results,  Invited: 6 results) Funded Workshop (1 results)

  • [Int'l Joint Research] Univerisity of Iowa(米国)

    • Related Report
      2019 Research-status Report
  • [Journal Article] A remark on the finiteness of purely cosmetic surgeries2023

    • Author(s)
      Ito Tetsuya
    • Journal Title

      Algebraic & Geometric Topology

      Volume: 23 Issue: 5 Pages: 2213-2219

    • DOI

      10.2140/agt.2023.23.2213

    • Related Report
      2023 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A note on knot fertility. II2023

    • Author(s)
      Ito T.
    • Journal Title

      Acta Mathematica Hungarica

      Volume: 169 Issue: 2 Pages: 553-561

    • DOI

      10.1007/s10474-023-01317-7

    • Related Report
      2023 Research-status Report
    • Peer Reviewed
  • [Journal Article] On a group whose generalized torsion elements are torsion elements2023

    • Author(s)
      Ito Tetsuya
    • Journal Title

      Communications in Algebra

      Volume: 52 Issue: 3 Pages: 1271-1276

    • DOI

      10.1080/00927872.2023.2260485

    • Related Report
      2023 Research-status Report
    • Peer Reviewed
  • [Journal Article] Applications of the Casson-Walker invariant to the knot complement and the cosmetic crossing conjectures2022

    • Author(s)
      Ito Tetsuya
    • Journal Title

      Geometriae Dedicata

      Volume: 216 Issue: 6

    • DOI

      10.1007/s10711-022-00722-6

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] A quantitative Birman?Menasco finiteness theorem and its application to crossing number2022

    • Author(s)
      Ito Tetsuya
    • Journal Title

      Journal of Topology

      Volume: 15 Issue: 4 Pages: 1794-1806

    • DOI

      10.1112/topo.12259

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] On homogeneous quasipositive links2022

    • Author(s)
      Ito Tetsuya
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 31 Issue: 12

    • DOI

      10.1142/s0218216522500808

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] A note on HOMFLY polynomial of positive braid links2022

    • Author(s)
      Ito Tetsuya
    • Journal Title

      International Journal of Mathematics

      Volume: 33 Issue: 04

    • DOI

      10.1142/s0129167x22500318

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Generalized torsion for hyperbolic 3‐manifold groups with arbitrary large rank2022

    • Author(s)
      Ito Tetsuya、Motegi Kimihiko、Teragaito Masakazu
    • Journal Title

      Bulletin of the London Mathematical Society

      Volume: - Issue: 3 Pages: 1203-1209

    • DOI

      10.1112/blms.12784

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] On constraints for knots to admit chirally cosmetic surgeries and their calculations2022

    • Author(s)
      Kazuhiro Ichihara, Tetsuya Ito and Toshio Saito
    • Journal Title

      Pacific Journal of Mathematics

      Volume: 321 Issue: 1 Pages: 167-191

    • DOI

      10.2140/pjm.2022.321.167

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] An obstruction of Gordian distance one and cosmetic crossings for genus one knots.2022

    • Author(s)
      Tetsuya Ito
    • Journal Title

      New York J. Math.

      Volume: 28

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Cosmetic crossing conjecture for genus one knots with non-trivial Alexander polynomial.2022

    • Author(s)
      Tetsuya Ito
    • Journal Title

      Proc. Amer. Math. Soc.

      Volume: 150 Issue: 02 Pages: 871-876

    • DOI

      10.1090/proc/15654

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Chirally Cosmetic Surgeries and Casson Invariants2021

    • Author(s)
      ICHIHARA Kazuhiro、ITO Tetsuya、SAITO Toshio
    • Journal Title

      Tokyo Journal of Mathematics

      Volume: 44 Issue: -1 Pages: 1-24

    • DOI

      10.3836/tjm/1502179325

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A NOTE ON KNOT FERTILITY2021

    • Author(s)
      Tetsuya Ito
    • Journal Title

      Kyushu Journal of Mathematics

      Volume: 75 Issue: 2 Pages: 273-276

    • DOI

      10.2206/kyushujm.75.273

    • NAID

      130008101301

    • ISSN
      1340-6116, 1883-2032
    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Generalized torsion and Dehn filling.2021

    • Author(s)
      Tetsuya Ito. Kimihiko Motegi, Masakazu Teragaito,
    • Journal Title

      Topology Appl.

      Volume: 301 Pages: 107515-107515

    • DOI

      10.1016/j.topol.2020.107515

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Flat plumbing basket and contact structure2021

    • Author(s)
      Ito Tetsuya、Tagami Keiji
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 30 Issue: 02 Pages: 2150010-2150010

    • DOI

      10.1142/s0218216521500103

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] A note on chirally cosmetic surgery on cable knots.2021

    • Author(s)
      Tetsuya Ito
    • Journal Title

      Canad. Math. Bull.

      Volume: 64 Issue: 1 Pages: 163-173

    • DOI

      10.4153/s0008439520000338

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Mutation invariance for the zeroth coefficients of colored HOMFLY polynomial2020

    • Author(s)
      Tetsuya Ito
    • Journal Title

      Kodai Mathematical Journal

      Volume: 43 Issue: 1 Pages: 1-15

    • DOI

      10.2996/kmj/1584345685

    • NAID

      130007812096

    • ISSN
      0386-5991, 1881-5472
    • Year and Date
      2020-03-15
    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] On LMO invariant constraints for cosmetic surgery and other surgery problems for knots in S^32020

    • Author(s)
      Tetsuya Ito
    • Journal Title

      Comm. Anal. Geom.

      Volume: 28 Issue: 2 Pages: 321-349

    • DOI

      10.4310/cag.2020.v28.n2.a4

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] A NONDEGENERATE EXCHANGE MOVE ALWAYS PRODUCES INFINITELY MANY NONCONJUGATE BRAIDS2019

    • Author(s)
      ITO TETSUYA
    • Journal Title

      Nagoya Mathematical Journal

      Volume: - Pages: 1-4

    • DOI

      10.1017/nmj.2019.38

    • Related Report
      2021 Research-status Report 2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Nontrivial elements in a knot group which are trivialized by Dehn fillings2019

    • Author(s)
      Tetsuya Ito, Kimihiko Motegi and Masakazu Teragaito
    • Journal Title

      Int. Math. Res. Not. IMRN

      Volume: - Issue: 11 Pages: 8297-8321

    • DOI

      10.1093/imrn/rnz069

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Generalized torsion and decomposition of 3-manifolds2019

    • Author(s)
      Tetsuya Ito, Kimihiko Motegi, Masakazu Teragaito
    • Journal Title

      Proceedings of the American Mathematical Society

      Volume: 印刷中 Issue: 11 Pages: 4999-5008

    • DOI

      10.1090/proc/14581

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Positivities of Knots and Links and the Defect of Bennequin Inequality2019

    • Author(s)
      Hamer Jesse、Ito Tetsuya、Kawamuro Keiko
    • Journal Title

      Experimental Mathematics

      Volume: - Issue: 1 Pages: 1-27

    • DOI

      10.1080/10586458.2019.1596848

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Generalized torsion elements as generalization of torsion elements2023

    • Author(s)
      Tetsuya Ito
    • Organizer
      Orderable groups
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Birman-Menasco finiteness theorem revisited2022

    • Author(s)
      Tetsuya Ito
    • Organizer
      Braids in Low-Dimensional Topology
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Cosmetic crossing 予想の現状2021

    • Author(s)
      Tetsuya Ito
    • Organizer
      N-KOOKセミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] A quantitative Birman-Menasco finiteness theorem and its application to crossing number problems2021

    • Author(s)
      Tetsuya Ito
    • Organizer
      The 16th East Asian Conference on Geometric Topology
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Bennequin inequality and strongly quasipositive braids in annulus open books2020

    • Author(s)
      Tetsuya Ito
    • Organizer
      Mini-Symposium : Knot Theory on Okinawa
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Generalized torsion in 3-manifold groups and normal closures of slope elements2019

    • Author(s)
      Ito Tetsuya、Motegi Kimihiko、Teragaito Masakazu
    • Organizer
      Ordered Groups and Rigidity in Dynamics and Topology
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Garside theory and braid group representations.2019

    • Author(s)
      Tetsuya Ito
    • Organizer
      Expansions, Lie Algebras, and Invariants
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Funded Workshop] The 15th East Asian Conference on Geometric Topology2020

    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi