• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Real analysis via sparse domination

Research Project

Project/Area Number 19K03538
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionKyoto University (2020-2022)
Shinshu University (2019)

Principal Investigator

Tsutsui Yohei  京都大学, 理学研究科, 准教授 (40722773)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
KeywordsSparse domionation / median / rearrangement / Navier-Stokes 方程式 / sparse domination / rearrangements / medians / local smoothing / Medians / Rearrangements / Maximal functions / Sparse domination / Rearrangement / Median / Sparse bound / half wave operator / Riesz means / Kakeya conjecture / Local smoothing
Outline of Research at the Start

Sparse domination と呼ばれる、作用素の各点評価を与える技術が近年盛んに研究されている。その適応範囲は、従来の特異積分作用素を超え、Kakeya 予想に関連する Riesz means に対しても、有効であることがわかっている。ただ、まだ未熟な部分も見受けられる。本研究は、このsparse domination を用い、上述の Riesz means などへの最良な評価を与えることである。また、sparse domination のさらなる Hardy空間へのさらなる発展や未熟な部分の再検討も行う。Sparse domination には、関連しない別の実解析学の問題も取り扱う。

Outline of Final Research Achievements

I explain three results which had been gotten during this project. First, I gave a sparse domination for an integral operator involving the half wave operator. The operator dominates the maximal Riesz operator. The second result is a characterization of the set of medians in terms of rearrangements, and boundedness of fractional maximal operator defined by medians or rearrangements. The last one is a local existence of solutions to the incompressible Navier-Stoes equation with external force and smooth but large initial data.

Academic Significance and Societal Importance of the Research Achievements

2つ目の結果の medain 全体の特徴付けは, medain と rearrangement の関連を明確にできた点は基本的なよい考察であったと考えられる. Median を用いた作用素の有界性については, 今後の Sobolev の不等式に関する研究の出発点となるものである. 最後の Navier-Stokes の局所解の存在については, 近年の流体の方程式の解の非存在や非一意性の研究と対をなすものとなっている.

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (17 results)

All 2023 2022 2021 2020 2019

All Journal Article (3 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 3 results) Presentation (14 results) (of which Int'l Joint Research: 5 results,  Invited: 11 results)

  • [Journal Article] Asymptotic stability of stationary Navier?Stokes flow in Besov spaces2021

    • Author(s)
      Cunanan Jayson、Okabe Takahiro、Tsutsui Yohei
    • Journal Title

      Asymptotic Analysis

      Volume: - Issue: 1 Pages: 1-22

    • DOI

      10.3233/asy-211720

    • Related Report
      2022 Annual Research Report 2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Remark on the strong solvability of the Navier?Stokes equations in the weak $$L^n$$ space2021

    • Author(s)
      Okabe Takahiro、Tsutsui Yohei
    • Journal Title

      Mathematische Annalen

      Volume: - Issue: 3-4 Pages: 1353-1390

    • DOI

      10.1007/s00208-021-02236-0

    • Related Report
      2022 Annual Research Report 2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Sparse bounds for local smoothing operators2019

    • Author(s)
      Yohei Tsutsui
    • Journal Title

      RIMS Kokyuroku Bessatsu B74: Harmonic Analysis and Nonlinear Partial Differential Equations

      Volume: 74 Pages: 127-137

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] Convergence to the initial data and weighted estimates for the in- compressible Navier-Stokes equations,2023

    • Author(s)
      筒井容平
    • Organizer
      日本数学会2023 年度年会函数方程式 論
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Medians, rearrangements and their maximal functions2022

    • Author(s)
      筒井容平
    • Organizer
      大阪大学数 学教室微分方程式セミナー
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Medians, rearrangements and their maximal functions2022

    • Author(s)
      筒井容平
    • Organizer
      南大阪応用 数学セミナー
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Rearrangements, medians and their maximal functions2022

    • Author(s)
      筒井容平
    • Organizer
      2022 年度 秋季総合分科会実関数論分科会
    • Related Report
      2022 Annual Research Report
  • [Presentation] Rearrangements, medians and their maximal functions2022

    • Author(s)
      Yohei Tsutsui
    • Organizer
      RIMS共同研究(公開型) Workshop on Non-compact Variational Problems and Related Topics,
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Rearrangements, medians and their maximal functions2022

    • Author(s)
      筒井容平
    • Organizer
      第82 回東工大数理解析セミナー
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Median の成す集合について2022

    • Author(s)
      筒井容平
    • Organizer
      第37回 調和解析セミナー
    • Related Report
      2021 Research-status Report
  • [Presentation] Fractional medians and its maximal function2021

    • Author(s)
      Yohei Tsutsui
    • Organizer
      The 13th International ISAAC Congress
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Fractional medians and its maximal function2021

    • Author(s)
      Yohei Tsutsui
    • Organizer
      The 8th East Asian Conference in Harmonic Analysis and Applications
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] A sparse form bound for an operator with wave propagator2020

    • Author(s)
      筒井容平
    • Organizer
      NLPDEセミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] A sparse bound for a time-integral operator with wave propagator,2019

    • Author(s)
      筒井容平
    • Organizer
      九州函数方程式セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] A sparse bound for an time integral operator with wave propagator,2019

    • Author(s)
      筒井容平
    • Organizer
      日本数学会秋季総合分科会, 実函数論分科会特別講演
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] A sparse bound for an integral operator with wave propagator2019

    • Author(s)
      Yohei Tsutsui
    • Organizer
      Special session on " Function Spaces and their Applications to Nonlinear Evolutional Equations", 12th ISAAC
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] A sparse bound for a time-integral operator with the half-wave propagator2019

    • Author(s)
      Yohei Tsutsui
    • Organizer
      International Conference on Function Spaces and Geometric Anal- ysis and Their Applications
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi