• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Bayesian statistical inference under shrinkage priors

Research Project

Project/Area Number 19K11852
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 60030:Statistical science-related
Research InstitutionKobe University (2020-2023)
The University of Tokyo (2019)

Principal Investigator

Maruyama Yuzo  神戸大学, 経営学研究科, 教授 (30304728)

Co-Investigator(Kenkyū-buntansha) 分寺 杏介  神戸大学, 経営学研究科, 准教授 (40962957)
湯浅 良太  統計数理研究所, 統計思考院, 助教 (90964487)
羽村 靖之  京都大学, 経済学研究科, 講師 (00964983)
星野 伸明  金沢大学, 経済学経営学系, 教授 (00313627)
Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2021: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywordsベイズ統計学 / 縮小型事前分布 / 統計学 / 事前分布
Outline of Research at the Start

線形回帰モデルは,多変量統計解析を行う上での最も基本的な統計モデルである.本研究では,理論的立場から線形回帰モデルにおける統計的推測問題を考える.特に,その重要性・有効性が明らかになってきた縮小型事前分布を用いたベイズ統計的推測手法に照準を絞り,統計的決定理論の立場からその良さを解明することが本研究の最大の目的である.特に,推定問題において一般化ベイズ推定量が許容的であるための十分条件について,以前から取り組んでいた未解決問題の解決を目指す.また,近年解明されつつある予測問題におけるスタイン現象の完全な理解を目指す.

Outline of Final Research Achievements

Statistical models that assume a probabilistic structure behind the data are widely used to draw useful conclusions from the data. Among these, the normal distribution model is the most basic and the first important model to be examined for validity. The normal distribution is a distribution characterized by two parameters, mean and variance. The estimation of these parameters (especially the mean) has a long history, and there is a great deal of theoretical accumulation. However, despite the simplicity of the problem set-up, there remain problems that have not been fully clarified theoretically. For such problems, we have shown that the Bayesian estimator under a reduced prior distribution has theoretical merit.

Academic Significance and Societal Importance of the Research Achievements

データの背後に確率的な構造を想定する統計的モデルは,データから有用な結論を導くために広く使われている手法である。その中でも正規分布モデルは最も基本的であり,まず最初に妥当性が検討される重要なモデルである。正規分布は平均と分散という2つのパラメータで特徴づけられる分布である。そのパラメータ推定(特に平均)は長い歴史があり,多くの理論的な蓄積がある。しかし,その問題設定の簡単さにも関わらず理論的解明が不十分な問題が残されていた。そのような問題に対して,縮小型事前分布のもとでのベイズ推定量が理論的良さを持つことを示した。

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (16 results)

All 2023 2022 2021 2020 2019

All Journal Article (8 results) (of which Int'l Joint Research: 7 results,  Peer Reviewed: 8 results,  Open Access: 4 results) Presentation (7 results) (of which Int'l Joint Research: 3 results,  Invited: 4 results) Book (1 results)

  • [Journal Article] Non-minimaxity of debiased shrinkage estimators2023

    • Author(s)
      Yuzo Maruyama, Akimichi Takemura
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: - Issue: 1 Pages: 361-375

    • DOI

      10.1007/s42081-023-00218-x

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A review of Brown 1971 (in)admissibility results under scale mixtures of Gaussian priors2023

    • Author(s)
      Maruyama Yuzo、Strawderman William E.
    • Journal Title

      Journal of Statistical Planning and Inference

      Volume: 222 Pages: 78-93

    • DOI

      10.1016/j.jspi.2022.06.005

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] On admissible estimation of a mean vector when the scale is unknown2023

    • Author(s)
      Maruyama Yuzo、Strawderman William E.
    • Journal Title

      Bernoulli

      Volume: 29 Issue: 1 Pages: 153-180

    • DOI

      10.3150/21-bej1453

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Ensemble minimaxity of James‐Stein estimators2022

    • Author(s)
      Maruyama Yuzo、Brown Lawrence D.、George Edward I.
    • Journal Title

      Stat

      Volume: 11 Issue: 1

    • DOI

      10.1002/sta4.532

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Admissible estimators of a multivariate normal mean vector when the scale is unknown2021

    • Author(s)
      Maruyama, Y. and Strawderman, W,E.
    • Journal Title

      Biometrika

      Volume: 108 Issue: 4 Pages: 997-1003

    • DOI

      10.1093/biomet/asaa102

    • Related Report
      2021 Research-status Report 2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A Gaussian sequence approach for proving minimaxity: A Review2021

    • Author(s)
      Maruyama Yuzo、Strawderman William E.
    • Journal Title

      Journal of Statistical Planning and Inference

      Volume: 211 Pages: 256-270

    • DOI

      10.1016/j.jspi.2020.06.007

    • NAID

      120006897876

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Admissible Bayes equivariant estimation of location vectors for spherically symmetric distributions with unknown scale2020

    • Author(s)
      Maruyama Yuzo、Strawderman William E.
    • Journal Title

      The Annals of Statistics

      Volume: 48 Issue: 2 Pages: 1052-1071

    • DOI

      10.1214/19-aos1837

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Harmonic Bayesian Prediction Under α -Divergence2019

    • Author(s)
      Yuzo Maruyama, Takeru Matsuda, Toshio Ohnishi
    • Journal Title

      IEEE Transactions on Information Theory

      Volume: 65 Issue: 9 Pages: 5352-5366

    • DOI

      10.1109/tit.2019.2915245

    • NAID

      120007017124

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Non-minimaxity of debiased shrinkage estimators2023

    • Author(s)
      丸山 祐造
    • Organizer
      統計関連学会連合大会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 多変量正規分布の平均ベクトルの推定問題における分散未知の場合のミニマクスで許容的な推定量2022

    • Author(s)
      丸山 祐造
    • Organizer
      2022年度統計関連学会連合大会
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Admissible estimators of a multivariate normal mean vector when the scale is unknown2021

    • Author(s)
      Yuzo Maruyama
    • Organizer
      EAC-ISBA 2021
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 平均ベクトルの推定における分散未知のもとでの許容的でミニマクスな推定量2021

    • Author(s)
      丸山 祐造
    • Organizer
      統計関連学会連合大会
    • Related Report
      2021 Research-status Report
  • [Presentation] On admissible estimation of a mean vector when the scale is unknown2021

    • Author(s)
      丸山 祐造
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2021 Research-status Report
  • [Presentation] Ensemble minimaxity of James-Stein estimators2019

    • Author(s)
      Yuzo Maruyama
    • Organizer
      the “New and Evolving Roles of Shrinkage in Large-Scale Prediction and Inference” workshop
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Ensemble minimaxity of James-Stein estimators2019

    • Author(s)
      Yuzo Maruyama
    • Organizer
      Symposium in Memory of Charles Stein
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Book] Stein Estimation2023

    • Author(s)
      Yuzo Maruyama, Tatsuya Kubokawa, William E. Strawderman
    • Total Pages
      130
    • Publisher
      Springer
    • ISBN
      9789819960767
    • Related Report
      2023 Annual Research Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi