• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A study on recommendation systems using group brain activity

Research Project

Project/Area Number 19K12182
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 61060:Kansei informatics-related
Research InstitutionUniversity of Toyama

Principal Investigator

Misawa Tadanobu  富山大学, 学術研究部工学系, 准教授 (90398991)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Keywordsニューロマーケティング
Outline of Research at the Start

本研究では,近年の非侵襲的脳機能計測技術,ネットワーク技術,人工知能の発展を受け,集団脳活動を用いた推薦システムを構築することを目的とする.そのために,好みに関する脳活動を計測し,脳活動の個人差に関して統計的手法を用いて検証する.検証結果に基づき,機械学習を用いて推薦対象者に対して未知商品に関する評価値を予測する手法を構築し,オンライン実験によりシステムの評価を行い,集団の脳活動の利用可能性を探る.

Outline of Final Research Achievements

In recent years, noninvasive brain function measurement techniques have been developed and human brain functions have been elucidated. These results have been applied to research on neuromarketing, which aims to elucidate purchase decision-making factors from the perspective of measuring brain functions. In this study, we explored the possibility of using group brain activity by constructing a recommendation system using group brain activity. Specifically, we experimented to measure the brain function of preference, which is related to purchase decision-making, and based on the results, we predicted the degree of preference. The results show that building a machine learning model using the results of multiple pre-processes improves prediction accuracy.

Academic Significance and Societal Importance of the Research Achievements

これまでの脳活動を用いたシステムでは,個人の脳活動を用いてモデルが構築されていることが多い.本研究では,脳活動から集団レベルの予測を行う手法の構築を目指すことで,脳活動を用いたシステムの精度向上や消費者が求める製品の開発への応用展開が期待できる.また,その他の生体信号を用いたシステムの高機能化への貢献が期待できる.以上より,本研究の成果はヒューマンセンシング技術の利用機会を促進し,現在のICTサービスを飛躍的に向上させることが期待できる.

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (3 results)

All 2023 2020 2019

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (1 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] A Study on Methuselah in Game of Life with Sugarscape Model2023

    • Author(s)
      Misawa Tadanobu、Yamashita Kazuya、Inazumi Yasuhiro、Okino Koji
    • Journal Title

      IEEJ Transactions on Electronics, Information and Systems

      Volume: 143 Issue: 1 Pages: 101-102

    • DOI

      10.1541/ieejeiss.143.101

    • ISSN
      0385-4221, 1348-8155
    • Year and Date
      2023-01-01
    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] A Study on Game of Life with Sugarscape Model2020

    • Author(s)
      参沢匡将, 山下和也, 稲積泰宏, 沖野 浩二
    • Journal Title

      電子情報通信学会論文誌D 情報・システム

      Volume: J103-D Issue: 4 Pages: 352-354

    • DOI

      10.14923/transinfj.2019JDL8009

    • ISSN
      1880-4535, 1881-0225
    • Year and Date
      2020-04-01
    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] Research on stock price prediction using multi-layered perceptron and weak learners optimized by a genetic algorithm2019

    • Author(s)
      Hiroki Sakaguchi, Tadanobu Misawa and Kazuya Yamashita
    • Organizer
      The 20th Asia Pacific Industrial Engineering And Management Systems (APIEMS 2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi