Testing for Distributional Divergence in the Pillars of Global Sustainable Development: Integrating the Insights from a New Hierarchical Clustering Algorithm
Project/Area Number |
19K13669
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 07030:Economic statistics-related
|
Research Institution | Nagoya University |
Principal Investigator |
MENDEZ Carlos 名古屋大学, 国際開発研究科, 准教授 (00771833)
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
|
Keywords | Sustainable development / Clustering methods / Convergence clubs / Beyond GDP / Inequality / Welfare / Efficiency / Regional inequality / Subnational data / Satellite data / Labor productivity / Convergence clusters / Machine learning methods / Productivity convergence / Input-output networks / Regional efficiency / Density-based clustering / Distribution dynamics / Hierarchical clustering / Convergence |
Outline of Research at the Start |
In this study, I test the degree of cross-country divergence in sustainable development by integrating a new hierarchical clustering algorithm from the unsupervised machine learning literature.
|
Outline of Final Research Achievements |
This research project used a new clustering algorithm to study the evolution of sustainable development across and within countries. This allowed for a more complete representation of the recent dynamics and multidimensional structure of sustainable global development. The main research outputs of this project include: 17 international peer-reviewed papers published, 1 international book published, 17 (international and national) conference presentations, 4 top cited paper awards, and 1 encouragement award.
|
Academic Significance and Societal Importance of the Research Achievements |
この研究は、科学界や社会全体に対して重要な示唆を与えるものでした。科学の領域では、経済学と機械学習の手法を組み合わせ、独自の視点から持続可能な開発を分析しました。この革新的なアプローチにより、新たな研究視点が生まれ、全体的なパターンに対する理解が深まったと思われます。社会的には、経済格差、社会的包摂、労働生産性といった深刻な問題を探求することが重要でした。国や地域による経済的・社会的側面の違いを詳細に検討することで、より具体的な開発戦略が必要な分野を特定することができました。その結果、本研究は、よりバランスのとれた包括的な世界の理解に貢献することができた。
|
Report
(5 results)
Research Products
(44 results)