• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Topology, algebraic geometry, and representation theory in GKM theory

Research Project

Project/Area Number 19K14537
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 11020:Geometry-related
Research InstitutionNaruto University of Education (2020-2023)
Osaka City University (2019)

Principal Investigator

Yamanaka Hitoshi  鳴門教育大学, 大学院学校教育研究科, 准教授 (90725011)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
KeywordsGKM理論 / トーラス同変コホモロジー / GKMグラフ / トーラスグラフ / 同変Chern類 / 同変剛性 / トーリック多様体 / グラフ同変コホモロジー / Zariskiスペクトラム / 再構成アルゴリズム / Schubert多様体 / 一般トーラス軌道閉包 / Poincare多項式 / parindromicity / 同変コホモロジー / Kazhdan-Lusztig多項式 / 同変コホモロジー剛性 / 同変全Chern類 / 円周角の定理 / 接弦定理 / トーラス作用 / GKM多様体 / 不変Morse函数
Outline of Research at the Start

「次元」という量が「データを無駄なく表すのに必要な変数の最小数」を表すことから,4次元以上の図形は科学の諸分野にごく普通に現れる.

本研究では,高次元の図形を対称性の観点から調べる.地球の表面を球面と思って地軸の周りに回転させても,地球自体は同じ位置にある(各地域の位置は変わるが).これを「球面の回転対称性」という.このとき,北極と南極だけは動かないが,「変換群論」の重要な知見として,このような「不動点」の周りの情報から図形の性質が読み取れることが知られている.

「GKM理論」は前世紀の終わりに現れ,上の事を「同変コホモロジー」の観点から精密化している.本研究ではこの理論の深化・応用を行う.

Outline of Final Research Achievements

This research project belongs to a field called transformation group theory, which studies the properties of spaces by exploiting the symmetries of various spaces. The research field involves various fields, such as topology, algebraic geometry and representation theory, and accordingly, various considerations can be made.
Our study focuses on what is called GKM theory within transformation group theory, and the main object is torus equivariant cohomology, which is an object with a structure of operations such as addition and multiplication. The object c is constracted from a space with a group action and it is known to contain many properties related to the space. In this research project, this has been successfully refined from the point of view of the equivariant rigidity.

Academic Significance and Societal Importance of the Research Achievements

変換群論はそれ自身1つの分野として確立されているが、可換代数、組み合わせ論、トポロジー、代数幾何、表現論といった諸分野とも自然かつ密接に関係している。

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (6 results)

All 2023 2021 2019

All Journal Article (3 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 3 results,  Open Access: 2 results) Presentation (3 results) (of which Int'l Joint Research: 3 results,  Invited: 3 results)

  • [Journal Article] 円周角をめぐる諸定理への接線と対称性による統一的アプローチ2023

    • Author(s)
      山中仁
    • Journal Title

      数学教育学会誌

      Volume: 63 Pages: 45-54

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] On the sign ambiguity in equivariant cohomological rigidity of GKM graphs2021

    • Author(s)
      Hitoshi Yamanaka
    • Journal Title

      Proceedings of the Japan Academy, Series A

      Volume: 97(9) Pages: 76-81

    • NAID

      40022751473

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Graph equivariant cohomological rigidity for GKM graphs2019

    • Author(s)
      Franz Matthias、Yamanaka Hitoshi
    • Journal Title

      Proceedings of the Japan Academy, Series A, Mathematical Sciences

      Volume: 95 Issue: 10 Pages: 107-110

    • DOI

      10.3792/pjaa.95.107

    • NAID

      40022103493

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] On the sign ambiguity in the equivariant cohomological rigidity for GKM graphs2021

    • Author(s)
      Hitoshi Yamanaka
    • Organizer
      Toric Topology 2021 in Osaka
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Stratifications on generic torus orbit closures2019

    • Author(s)
      Hitoshi Yamanaka
    • Organizer
      第46回変換群論シンポジウム
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Stratifications on generic torus orbit closures2019

    • Author(s)
      Hitoshi Yamanaka
    • Organizer
      Toric Topology 2019 in Okayama
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi