• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research of function spaces with Hausdorff capacities

Research Project

Project/Area Number 19K14577
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionNihon University

Principal Investigator

SAITO Hiroki  日本大学, 理工学部, 准教授 (20736631)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2021: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2020: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
KeywordsHausdorff容量 / 分数冪極大関数 / Rieszポテンシャル / 荷重理論 / Besov空間 / Morrey空間 / Choquet空間 / 荷重 / Sobolev空間 / 荷重付Hausdorff容量 / 分数冪積分作用素 / capacity / 荷重付きHausdorff容量 / 双対空間 / 極大関数 / 分数冪Sobolev空間
Outline of Research at the Start

調和解析・実解析の研究において,極大関数の有界性や荷重理論, Hausdorff容量は, 偏微分方程式やポテンシャル論などへの応用を持つ重要なテーマである.本研究課題は,応募者が得てきた荷重付Hausdorff容量による種々の極大関数の有界性の結果を利用して,荷重付分数冪Sobolev容量をHausdorff容量に適合するように定式化し,基本的性質を明らかにする. それにより,新しい同値式を開発することで対応する偏微分方程式の解の表示を得ることと,付随して得られるCarlesonの埋込み定理の特徴づけの新しい変形を得ることを目的とする.

Outline of Final Research Achievements

The Riesz potential and fractional maximal function contribute significantly to Harmonic analysis and PDEs. We establish the Fefferman-Stein type inequalities on the weighted Choquet spaces using weighted Hausdorff capacities. Additionally, we gave an alternative proof for the dual theorem of Choquet spaces, originally due to Adams. To accomplish this, the Morrey space consisting of measures plays a crucial role. These results provide a sufficient condition of weights for an embedding theorem of weighted Besov spaces into weighted Choquet spaces. It is clarified that the lifting effect of Riesz potential on such Morrey spaces is of importance.

Academic Significance and Societal Importance of the Research Achievements

近年Hausdorff容量が非整数次元の幾何的特徴を制御できることから,幾何学,偏微分方程式などへの応用は盛んになっており,Hausdorff容量を用いて定義される関数空間の性質の重要性が高まってきている.本研究によってRieszポテンシャルがChoquet空間などに与える影響が明らかになったことは,微分の作用がChoquet空間の次元にどう影響を与えているか,また荷重付Besov空間をChoquet空間に埋め込むための条件を理解することができるようになったことを意味し,幾何学と偏微分方程式に対する新たな手法を提案できているという意味で,意義があるものであると考えられる.

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (12 results)

All 2024 2022 2021 2019

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 1 results) Presentation (9 results) (of which Int'l Joint Research: 2 results,  Invited: 1 results)

  • [Journal Article] CHOQUET INTEGRALS, HAUSDORFF CONTENT AND FRACTIONAL OPERATORS2024

    • Author(s)
      HATANO NAOYA、KAWASUMI RYOTA、SAITO HIROKI、TANAKA HITOSHI
    • Journal Title

      Bulletin of the Australian Mathematical Society

      Volume: - Issue: 2 Pages: 1-12

    • DOI

      10.1017/s000497272400011x

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A Note on Embedding Inequalities for Weighted Sobolev and Besov Spaces2022

    • Author(s)
      Hiroki Saito
    • Journal Title

      TAIWANESE JOURNAL OF MATHEMATICS

      Volume: 26 Issue: 2 Pages: 363-379

    • DOI

      10.11650/tjm/211204

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Block Decomposition and Weighted Hausdorff Content2019

    • Author(s)
      Saito Hiroki、Tanaka Hitoshi、Watanabe Toshikazu
    • Journal Title

      Canadian Mathematical Bulletin

      Volume: 63 Issue: 1 Pages: 141-156

    • DOI

      10.4153/s000843951900033x

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] A note on embedding inequalities for weighted Sobolev and Besov spaces2022

    • Author(s)
      齋藤洋樹
    • Organizer
      日本数学会
    • Related Report
      2022 Research-status Report
  • [Presentation] Choquet integrals, Hausdorff content and sparse operator2022

    • Author(s)
      齋藤洋樹
    • Organizer
      日本数学会
    • Related Report
      2022 Research-status Report
  • [Presentation] Some embedding inequalities for weighted Sobolev and Besov spaces2022

    • Author(s)
      齋藤洋樹
    • Organizer
      NCTS Conference on Fractional Integrals and related phenomena in Analysis
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Weighted inequality for fractional Sobolev spaces and isoperimetric inequalities2022

    • Author(s)
      齋藤洋樹
    • Organizer
      実解析シンポジウム2022
    • Related Report
      2022 Research-status Report
  • [Presentation] Some embedding inequalities for weighted Sobolev and Besov spaces2021

    • Author(s)
      齋藤洋樹
    • Organizer
      Real, Complex and Functional Analysis Seminar 2021
    • Related Report
      2021 Research-status Report
  • [Presentation] Dual of the Choquet spaces with weighted Hausdorff content2019

    • Author(s)
      齋藤洋樹
    • Organizer
      Function Spaces and Geometric Analysis and Their Applications
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Hausdorff容量によるChoquet空間の双対空間について2019

    • Author(s)
      齋藤洋樹
    • Organizer
      Real, Complex and Functional Analysis Seminar 2019
    • Related Report
      2019 Research-status Report
  • [Presentation] Dual of the Choquet spaces with weighted Hausdorff content2019

    • Author(s)
      齋藤洋樹
    • Organizer
      実解析シンポジウム2019
    • Related Report
      2019 Research-status Report
  • [Presentation] Hausdorff容量によるChoquet空間上において強極大関数が有界となる指数について2019

    • Author(s)
      齋藤洋樹
    • Organizer
      日本数学会
    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi