Research on shadows and fibration structures of 4-manifolds
Project/Area Number |
19K21019
|
Project/Area Number (Other) |
18H05827 (2018)
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund (2019) Single-year Grants (2018) |
Review Section |
0201:Algebra, geometry, analysis, applied mathematics,and related fields
|
Research Institution | Chuo University (2019) Tohoku University (2018) |
Principal Investigator |
|
Project Period (FY) |
2018-08-24 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 4次元多様体 / シャドウ / レフシェッツファイバー空間 / 微分構造 / 接触構造 / 結び目理論 / 特異点論 / 3次元多様体 / 4次元多様体 / ファイバー束 / 結び目 / ザイフェルトファイバー空間 / スパイン / 低次元トポロジー / トポロジー / シャドウ複雑度 / ファイバー構造 / ハンドル分解 |
Outline of Research at the Start |
シャドウとは4次元多様体に適切に埋め込まれた2次元の多面体であり,4次元多様体の一種の表示を与える.また,シャドウのもつ頂点の個数の最小値としてシャドウ複雑度と呼ばれる4次元多様体の不変量が定義される.本研究では,シャドウを用いた4次元多様体のファイバー束構造の研究,及びシャドウ複雑度を用いた4次元多様体の分類・特徴づけを行う.具体的には,4次元多様体のレフシェッツ束とその派生概念に焦点を当て,シャドウが2次元多面体であることを活用し研究を行う.また,シャドウ複雑度に関しては,境界の3次元多様体の幾何構造にも着目し研究を進める.
|
Outline of Final Research Achievements |
We studied differential structures and fibration structures of 4-manifolds by using shadows. The main achievements are as follows. (1) We provided the method of construction of a shadow for a divide and shadow description of Lefschetz fibrations. (2) In terms of shadows, we provided a sufficient condition for an acyclic 4-manifold with boundary the 3-sphere to be diffeomorphic to the standard 4-ball. (3) We define shadows for 2-knots and provided some examples. (4) We studied a correspondence between flow-spines and contact structures on 3-manifolds and provided some examples.
|
Academic Significance and Societal Importance of the Research Achievements |
シャドウは4次元多様体に関する様々な観点を与える;ハンドル分解,``多面体上の''円板束,曲面の埋め込み・はめ込み.今回の研究は,これらの概念を4次元多様体の中で相互に理解しつつ,4次元トポロジーで重要視される微分構造やファイバー構造の研究に対して新たな研究手法を与えるというものである.また,シャドウは多面体という組み合わせ的性質を持つ応用性の高い対象であり,具体例としても扱いやすい側面がある.シャドウの適用例・応用例を提示したことで,今後の低次元トポロジーにおける研究のひとつの方針を与えたと言える.
|
Report
(3 results)
Research Products
(16 results)