Project/Area Number |
19K21932
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 19:Fluid engineering, thermal engineering, and related fields
|
Research Institution | Kyoto University |
Principal Investigator |
Namura Kyoko 京都大学, 工学研究科, 助教 (20756803)
|
Project Period (FY) |
2019-06-28 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2020: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2019: ¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
|
Keywords | 水蒸気バブル / 光熱変換 / 光触媒反応 / 太陽光 / マイクロバブル / 流体混合 / マランゴニ対流 / 水分解 / 光触媒 |
Outline of Research at the Start |
化石燃料の枯渇が危惧される中,水素を利用したクリーンなエネルギー循環創成への期待が高まっています.光触媒とよばれる物質に電池をつなぎ太陽光をあてると,水を分解して水素を発生できることが知られています.本研究では,この水素発生効率を向上させるために,太陽光を水の分解だけでなく水の加熱にも利用します.水を加熱して蒸気のバブルを作ると,バブルのおかげでできた温度の高いところや水の流れが水の分解効率を上げてくれると期待しています.
|
Outline of Final Research Achievements |
The purpose of this research was to effectively utilize the energy of the portion of sunlight in the visible to near-infrared wavelength region. When light in this wavelength range is focused on a photothermal conversion thin film, localized heat is generated, which can produce microbubbles in water. Because the bubble is exposed to a steep temperature gradient, it experiences the surface tension gradient and significant volume changes. As a result, strong mixing flow is generated around the bubble. In this study, we clarified the conditions under which such a flow is generated, and also succeeded in controlling the flow under uniform light irradiation. It was also found that this flow can efficiently mix the ambient fluid. This phenomenon is useful for promoting photocatalytic reactions that utilize mainly ultraviolet light.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、光熱変換・光触媒薄膜に擬似太陽光やレーザー光を照射することで、バブルの挙動の詳細な研究や流体攪拌性能の評価などを行った。得られた成果は太陽光を使った高度な流体制御を可能にし、今後の太陽光を利用した光触媒反応の応用方法を広げることができると期待される。また本成果は光触媒反応だけでなく、マイクロ水冷、洗浄、生化学分析、創薬、など、流体を用いるあらゆるデバイス開発においても有用な知見を与えた。さらに、小さな領域における熱と流体の動きの理解を深めて分野の発展に貢献した。
|