Project/Area Number |
19K22224
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 36:Inorganic materials chemistry, energy-related chemistry, and related fields
|
Research Institution | Hokkaido University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
國貞 雄治 北海道大学, 工学研究院, 助教 (00591075)
|
Project Period (FY) |
2019-06-28 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2020: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2019: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
|
Keywords | 触媒 / 蓄熱 / 熱制御 / マイクロカプセル / 伝熱 / メタネーション |
Outline of Research at the Start |
本研究では中高温潜熱蓄熱技術を基盤として、ナノ・マイクロスケールの 反応熱制御工学の創成を目指す。その先駆けとして触媒/担体/蓄熱材(=ヒートレシーバ ー/ドナー)がマイクロスケールで一体化した反応熱制御デバイスを創出する。さらに、第一原理計算によるナノスケールの触媒近傍の熱散逸・発生機構推定を通して、触媒の選 択性・耐久性を最大限に発現可能なデバイス構造を達成する。
|
Outline of Final Research Achievements |
The purpose of this study was to develop a reaction heat control device in which catalyst/carrier/micro-encapsulated phase change material are integrated and contact on a nano/micro scale. As the basis of development, we investigated a technology for supporting or coating the catalyst itself or a material in which a catalyst carrier composed of a catalyst or a complex oxide is integrated and contact on the shell surface of MEPCM. Although various reaction systems were considered, the materials were adjusted and their characteristics were evaluated by targeting the CO2 methanation reaction, which is attracting attention as an effective use technology for CO2. As a result, we succeeded in developing devices such as Ni-supported phase change microcapsules. In addition, it was observed that the developed devices can absorb the reaction heat of CO2 methanation.
|
Academic Significance and Societal Importance of the Research Achievements |
触媒反応プロセスの反応熱制御は、触媒の性能、寿命を左右する最重要要素の一つである。反応が触媒近傍のナノ・マイクロスケールで生じることを考えると、従来の多管熱交換式などの反応器設計レベルのミリ・センチスケールでの「見かけ」の熱制御技術から、ナノ・マイクロスケールでの反応熱制御技術への進化が必要であった。本研究で示した蓄熱マイクロカプセルを応用することによる触媒のナノ・マイクロスケール近傍での反応熱制御の技術シーズは、触媒反応における「熱」問題が抜本的な解決をもたらす可能性がある。
|