Research on Formalization and Algorithms for the Stable Matching Problems Adapted to Real World
Project/Area Number |
20700009
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Single-year Grants |
Research Field |
Fundamental theory of informatics
|
Research Institution | Kyoto University |
Principal Investigator |
MIYAZAKI Shuichi 京都大学, 学術情報メディアセンター, 准教授 (00303884)
|
Project Period (FY) |
2008 – 2011
|
Project Status |
Completed (Fiscal Year 2011)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2011: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2010: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2009: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2008: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | アルゴリズム / 組み合わせ問題 / 最適化問題 / 近似アルゴリズム / 安定マッチング / 研修医配属 / 近似困難性 / 安定マッチング問題 / 研修医配属問題 / 多項式時間アルゴリズム / Gale-shapleyアルゴリズム / NP困難性 / 近似度 / 組み合わせアルゴリズム / NP困難問題 / Gale-Shapleyアルゴリズム / 整数計画問題 / 線形計画緩和 / 安定結婚問題 / 最適化 / 線形計画問題 / 安定ルームメイト問題 |
Research Abstract |
In the stable matching problem, each person submits a list that orders members of the opposite gender based on his/her preference. The task is to find a matching with property called the stability. This problem can be applied to many real-world assignment problem, such as assigning residents to hospitals. In this research, we proposed several variants of this problem to adapt it to each occasion. We also proposed efficient algorithms for them, as well as proved some intractability and inapproximability.
|
Report
(6 results)
Research Products
(78 results)