• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Innovative Developments of Theories and Methodologies for Large Complex Data

Research Project

Project/Area Number 20H00576
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Review Section Medium-sized Section 60:Information science, computer engineering, and related fields
Research InstitutionUniversity of Tsukuba

Principal Investigator

青嶋 誠  筑波大学, 数理物質系, 教授 (90246679)

Co-Investigator(Kenkyū-buntansha) 矢田 和善  筑波大学, 数理物質系, 教授 (90585803)
星野 伸明  金沢大学, 経済学経営学系, 教授 (00313627)
塩濱 敬之  南山大学, 理工学部, 教授 (40361844)
鈴木 大慈  東京大学, 大学院情報理工学系研究科, 准教授 (60551372)
石井 晶  東京理科大学, 創域理工学部情報計算科学科, 講師 (20801161)
江頭 健斗  東京理科大学, 創域理工学部情報計算科学科, 助教 (20979869)
荒木 由布子  東北大学, 情報科学研究科, 教授 (80403913)
川野 秀一  九州大学, 数理学研究院, 教授 (50611448)
蛭川 潤一  新潟大学, 自然科学系, 准教授 (10386617)
松田 安昌  東北大学, 経済学研究科, 教授 (10301590)
田畑 耕治  東京理科大学, 理工学部情報科学科, 教授 (30453814)
片山 翔太  慶應義塾大学, 経済学部(三田), 准教授 (50742459)
中山 優吾  京都大学, 情報学研究科, 助教 (40884169)
植木 優夫  長崎大学, 情報データ科学部, 教授 (10515860)
小森 理  成蹊大学, 理工学部, 准教授 (60586379)
金森 敬文  東京工業大学, 情報理工学院, 教授 (60334546)
松井 秀俊  滋賀大学, データサイエンス学部, 准教授 (90633305)
Project Period (FY) 2020-04-01 – 2025-03-31
Project Status Granted (Fiscal Year 2024)
Budget Amount *help
¥44,460,000 (Direct Cost: ¥34,200,000、Indirect Cost: ¥10,260,000)
Fiscal Year 2024: ¥9,490,000 (Direct Cost: ¥7,300,000、Indirect Cost: ¥2,190,000)
Fiscal Year 2023: ¥9,360,000 (Direct Cost: ¥7,200,000、Indirect Cost: ¥2,160,000)
Fiscal Year 2022: ¥7,410,000 (Direct Cost: ¥5,700,000、Indirect Cost: ¥1,710,000)
Fiscal Year 2021: ¥8,190,000 (Direct Cost: ¥6,300,000、Indirect Cost: ¥1,890,000)
Fiscal Year 2020: ¥10,010,000 (Direct Cost: ¥7,700,000、Indirect Cost: ¥2,310,000)
Keywords高次元データ / 時空間データ / 高次元統計解析 / 深層学習 / 高次元小標本
Outline of Research at the Start

本研究は、益々巨大化かつ複雑化する多様な大規模複雑データに、統一的な理論を開拓し、高速で頑健かつ高精度な方法論を開発することで、最先端データ科学に革新的な展開を図る。高次元統計解析を基軸とし、機械学習、深層学習、時空間統計、生物統計、公的統計を世界的レベルでリードしてきた研究者達が本研究課題のもと一堂に会し、連携・融合・発展することで、科学技術・社会・経済・産業の要請に多大な貢献をもたらすことを目指す。

Outline of Annual Research Achievements

青嶋と矢田は、自動正則化主成分分析法とデータ変換法を考案し、高次元ノイズの高精度な除去を可能にした。高次元非階層型クラスタリングが一致性をもつ条件を示した。 自動正則化主成分分析法を使いデータの非スパース構造を解析して汚染と正常を精密に識別し、データ変換法を使い汚染データの正常化に成功した。 青嶋と矢田と石井は、深層学習の中間層に潜む非スパースな構造に汎化誤差の精密な評価をした。川野は、マルチタスク学習モデルにおいて、凸クラスタリングをモデリングの過程に組み込み、推定精度および予測精度を改善した。ベイズスパースモデルについて、連結lassoを馬蹄事前分布の枠組みに拡張した。蛭川は、独立性の帰無仮説に対して、定常ARMA対立仮説を検定する問題を局所定常過程に一般化し、ランク検定統計量を応用した。Le Camのcontiguityの概念とLe Cam’s third lemmaを応用し、帰無仮説と対立仮説の両方で検定統計量の漸近正規性を導いた。鈴木は、高次元データにおけるニューラルネットワークの学習に最適化と予測誤差の解析を行った。平均場ニューラルネットワークの学習について、収束解析と次元に対するサンプル複雑度を導出し、カーネル法に優越することを理論的に示した。データの非等方性が計算量と統計的予測誤差の両方を改善し、カーネル法よりも強く恩恵を受けることを示した。深層基盤モデルに関して近似誤差と汎化誤差を解析し、拡散モデルとTransformerが次元の呪いを回避する機構を備えていることを示した。荒木は、長期大規模コホート研究における高精度な生存時間推定法の開発に取り組み、時間依存共変量がある場合に生存関数推定のバイアスを除くモデルを検討した。
得られた研究成果は国内外の学会や学術誌で発表し、さらに、研究テーマに沿ったシンポジウムを筑波大学・新潟大学・九州大学・東北大学で開催した。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

研究計画の4年目として、多様な大規模複雑データを解析するための理論と方法論が、盤石に構築されてきた。特に、
(2)汚染データに頑健な非スパースモデリングの構築
(4)高次元統計解析による深層学習の解明
(5)大規模時空間データへの非スパースモデリングの拡張
については躍進的な成果が得られ、おおむね順調に進展していると評価できる。

Strategy for Future Research Activity

研究課題の最終年度では、研究目的に掲げた5点について、理論と方法論の研究成果を盤石なものにする。また、研究課題について総括的な国際シンポジウムを開催し、科学技術・社会・経済・産業の要請に多大な貢献をもたらすことを目指す。

Report

(5 results)
  • 2023 Annual Research Report
  • 2022 Annual Research Report
  • 2021 Annual Research Report
  • 2020 Comments on the Screening Results   Annual Research Report
  • Research Products

    (157 results)

All 2025 2024 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (22 results) Journal Article (45 results) (of which Int'l Joint Research: 12 results,  Peer Reviewed: 43 results,  Open Access: 37 results) Presentation (81 results) (of which Int'l Joint Research: 40 results,  Invited: 45 results) Book (2 results) Remarks (2 results) Funded Workshop (5 results)

  • [Int'l Joint Research] Princeton University/University of North Carolina/University of California, Davis(米国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Academia Sinica/National Taiwan University(中国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Seoul National University/韓国科学技術院(韓国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] University of Stavanger(ノルウェー)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] National University of Singapore(シンガポール)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research]

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Princeton University/University of North Carolina/Microsoft Research(米国)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] University of Toronto/Vector Institute(カナダ)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] Academia Sinica(中国)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] Seoul National University(韓国)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] University of Stavanger(ノルウェー)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] Princeton University/University of North Carolina(米国)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] Academia Sinica(中国)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] University of Stavanger(ノルウェー)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] University of Toronto(カナダ)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] Catholic University of the Sacred Heart(イタリア)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research]

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] Princeton University/University of North Carolina(米国)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] Academia Sinica(中国)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] University of Stavanger(ノルウェー)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] Seoul National University(韓国)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] Catholic University of the Sacred Heart(イタリア)

    • Related Report
      2020 Annual Research Report
  • [Journal Article] Automatic Sparse PCA for High-Dimensional Data2025

    • Author(s)
      Yata Kazuyoshi、Aoshima Makoto
    • Journal Title

      Statistica Sinica

      Volume: 35

    • DOI

      10.5705/ss.202022.0319

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Asymptotic properties of hierarchical clustering in high-dimensional settings2024

    • Author(s)
      Egashira Kento、Yata Kazuyoshi、Aoshima Makoto
    • Journal Title

      Journal of Multivariate Analysis

      Volume: 199 Pages: 105251-105251

    • DOI

      10.1016/j.jmva.2023.105251

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] High-dimensional Statistical Analysis and Its Application to an ALMA Map of NGC 2532024

    • Author(s)
      Takeuchi Tsutomu T.、Yata Kazuyoshi、Egashira Kento、Aoshima Makoto、Ishii Aki、Cooray Suchetha、Nakanishi Kouichiro、Kohno Kotaro、Kono Kai T.
    • Journal Title

      The Astrophysical Journal Supplement Series

      Volume: 271 Issue: 2 Pages: 44-44

    • DOI

      10.3847/1538-4365/ad2517

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Multi-task learning regression via convex clustering2024

    • Author(s)
      Akira Okazaki, Shuichi Kawano
    • Journal Title

      Computational Statistics & Data Analysis

      Volume: 195 Pages: 107956-107956

    • DOI

      10.1016/j.csda.2024.107956

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Anisotropy helps: improved statistical and computational complexity of the mean-field Langevin dynamics under structured data2024

    • Author(s)
      Atsushi Nitanda, Kazusato Oko, Taiji Suzuki, Denny Wu
    • Journal Title

      The Twelfth International Conference on Learning Representations

      Volume: ー

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Bayesian fused lasso modeling via horseshoe prior2023

    • Author(s)
      Yuko Kakikawa, Kaito Shimamura, Shuichi Kawano
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: 6 Issue: 2 Pages: 705-727

    • DOI

      10.1007/s42081-023-00213-2

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Convergence of mean-field Langevin dynamics: Time and space discretization, stochastic gradient, and variance reduction2023

    • Author(s)
      Taiji Suzuki, Denny Wu, Atsushi Nitanda
    • Journal Title

      Advances in Neural Information Processing Systems

      Volume: 37

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Feature learning via mean-field Langevin dynamics: classifying sparse parities and beyond2023

    • Author(s)
      Taiji Suzuki, Denny Wu, Kazusato Oko, Atsushi Nitanda
    • Journal Title

      Advances in Neural Information Processing Systems

      Volume: 37

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Diffusion Models are Minimax Optimal Distribution Estimators2023

    • Author(s)
      Kazusato Oko, Shunta Akiyama, Taiji Suzuki
    • Journal Title

      Proceedings of the 40th International Conference on Machine Learning

      Volume: 202 Pages: 26517-26582

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Approximation and Estimation Ability of Transformers for Sequence-to-Sequence Functions with Infinite Dimensional Input2023

    • Author(s)
      Shokichi Takakura, Taiji Suzuki
    • Journal Title

      Proceedings of the 40th International Conference on Machine Learning

      Volume: 202 Pages: 33416-33447

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Rank Tests for Randomness Against Time-Varying MA Alternative2023

    • Author(s)
      Hirukawa Junichi、Sakai Shunsuke
    • Journal Title

      In: Liu, Y., Hirukawa, J., Kakizawa, Y. (eds) Research Papers in Statistical Inference for Time Series and Related Models - Essays in Honor of Masanobu Taniguchi, Springer

      Volume: - Pages: 221-245

    • DOI

      10.1007/978-981-99-0803-5_9

    • ISBN
      9789819908028, 9789819908035
    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Statistical hypothesis testing for high-dimension, low-sample-size data2023

    • Author(s)
      Aoshima Makoto, Ishii Aki, Yata Kazuyoshi
    • Journal Title

      American Mathematical Society, Sugaku Expositions

      Volume: ー

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Uniform-in-time propagation of chaos for the mean field gradient Langevin dynamics2023

    • Author(s)
      Taiji Suzuki, Atsushi Nitanda, Denny Wu
    • Journal Title

      The 11th International Conference on Learning Representations

      Volume: ー

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] 高次元現象の統計数理2022

    • Author(s)
      青嶋誠
    • Journal Title

      日本数学会秋季総合分科会総合講演・企画特別講演アブストラクト

      Volume: ー Pages: 51-61

    • Related Report
      2022 Annual Research Report
  • [Journal Article] Geometric classifiers for high-dimensional noisy data2022

    • Author(s)
      Ishii Aki、Yata Kazuyoshi、Aoshima Makoto
    • Journal Title

      Journal of Multivariate Analysis

      Volume: 188 Pages: 104850-104850

    • DOI

      10.1016/j.jmva.2021.104850

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] 階層的クラスタリングの高次元漸近的性質について2022

    • Author(s)
      江頭健斗, 矢田和善, 青嶋誠
    • Journal Title

      数理解析研究所講究録

      Volume: 2221 Pages: 30-37

    • Related Report
      2022 Annual Research Report
    • Open Access
  • [Journal Article] Consistency of the objective general index in high-dimensional settings2022

    • Author(s)
      Takuma Bando, Tomonari Sei, Kazuyoshi Yata
    • Journal Title

      Journal of Multivariate Analysis

      Volume: 189 Pages: 104938-104938

    • DOI

      10.1016/j.jmva.2021.104938

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Advances in Quasi-Symmetry for Square Contingency Tables2022

    • Author(s)
      Tahata, K.
    • Journal Title

      Symmetry

      Volume: 14 Issue: 5 Pages: 1051-1051

    • DOI

      10.3390/sym14051051

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] High-dimensional asymptotics of feature learning: How one gradient step improves the representation2022

    • Author(s)
      Jimmy Ba, Murat A. Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, Greg Yang
    • Journal Title

      Advances in Neural Information Processing Systems

      Volume: 35 Pages: 32612-32623

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Escaping Saddle Points with Bias-Variance Reduced Local Perturbed SGD for Communication Efficient Nonconvex Distributed Learning2022

    • Author(s)
      Tomoya Murata, Taiji Suzuki
    • Journal Title

      Advances in Neural Information Processing Systems

      Volume: 35 Pages: 5039-5051

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] A Scaling Law for Synthetic-to-Real Transfer: How Much Is Your Pre-training Effective?2022

    • Author(s)
      Mikami Hiroaki、Fukumizu Kenji、Murai Shogo、Suzuki Shuji、Kikuchi Yuta、Suzuki Taiji、Maeda Shin-ichi、Hayashi Kohei
    • Journal Title

      Proceedings of Machine Learning and Knowledge Discovery in Databases, Part III. Springer Lecture Notes in Computer Science

      Volume: 13715 Pages: 477-492

    • DOI

      10.1007/978-3-031-26409-2_29

    • ISBN
      9783031264085, 9783031264092
    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Estimating spatial regression models with sample data-points: A Gibbs sampler solution2022

    • Author(s)
      Arbia Giuseppe、Matsuda Yasumasa、Wu Junyue
    • Journal Title

      Spatial Statistics

      Volume: 47 Pages: 100568-100568

    • DOI

      10.1016/j.spasta.2021.100568

    • Related Report
      2022 Annual Research Report 2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Deep two-way matrix reordering for relational data analysis2022

    • Author(s)
      Watanabe Chihiro、Suzuki Taiji
    • Journal Title

      Neural Networks

      Volume: 146 Pages: 303-315

    • DOI

      10.1016/j.neunet.2021.11.028

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] 論説:高次元小標本における統計的仮説検定2021

    • Author(s)
      青嶋 誠、石井 晶、矢田和善
    • Journal Title

      数学

      Volume: 73 Pages: 360-379

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Hypothesis tests for high-dimensional covariance structures2021

    • Author(s)
      Ishii Aki, Yata Kazuyoshi, Aoshima Makoto
    • Journal Title

      Annals of the Institute of Statistical Mathematics

      Volume: in press Issue: 3 Pages: 599-622

    • DOI

      10.1007/s10463-020-00760-5

    • NAID

      120007168344

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Clustering by principal component analysis with Gaussian kernel in high-dimension, low-sample-size settings2021

    • Author(s)
      Nakayama Yugo、Yata Kazuyoshi、Aoshima Makoto
    • Journal Title

      Journal of Multivariate Analysis

      Volume: 185 Pages: 104779-104779

    • DOI

      10.1016/j.jmva.2021.104779

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Asymptotic properties of distance-weighted discrimination and its bias correction for high-dimension, low-sample-size data2021

    • Author(s)
      Egashira Kento、Yata Kazuyoshi、Aoshima Makoto
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: 4 Issue: 2 Pages: 821-840

    • DOI

      10.1007/s42081-021-00135-x

    • NAID

      210000176902

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Smooth-threshold multivariate genetic prediction incorporating gene-environment interactions2021

    • Author(s)
      Ueki M, Tamiya G
    • Journal Title

      G3 Genes|Genomes|Genetics

      Volume: 11 Issue: 12

    • DOI

      10.1093/g3journal/jkab278

    • NAID

      120007190861

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A Unified Formulation of k-Means, Fuzzy c-Means and Gaussian Mixture Model by the Kolmogorov-Nagumo Average2021

    • Author(s)
      Osamu Komori and Shinto Eguchi
    • Journal Title

      Entropy

      Volume: 23 Issue: 5 Pages: 1-21

    • DOI

      10.3390/e23050518

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Selective inference for latent block models2021

    • Author(s)
      Watanabe Chihiro、Suzuki Taiji
    • Journal Title

      Electronic Journal of Statistics

      Volume: 15 Issue: 1 Pages: 3137-3183

    • DOI

      10.1214/21-ejs1853

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] On Learnability via Gradient Method for Two-Layer ReLU Neural Networks in Teacher-Student Setting2021

    • Author(s)
      Akiyama Shunta、Suzuki Taiji
    • Journal Title

      Proceedings of the 38th International Conference on Machine Learning, PMLR

      Volume: 139 Pages: 152-162

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Goodness-of-fit test for latent block models2021

    • Author(s)
      Watanabe Chihiro、Suzuki Taiji
    • Journal Title

      Computational Statistics & Data Analysis

      Volume: 154 Pages: 107090-107090

    • DOI

      10.1016/j.csda.2020.107090

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Estimation error analysis of deep learning on the regression problem on the variable exponent Besov space2021

    • Author(s)
      Tsuji Kazuma、Suzuki Taiji
    • Journal Title

      Electronic Journal of Statistics

      Volume: 15 Issue: 1 Pages: 1869-1908

    • DOI

      10.1214/21-ejs1828

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] VARIABLE SELECTION FOR HISTORICAL FUNCTIONAL LINEAR MODEL2021

    • Author(s)
      Matsui, H.
    • Journal Title

      Bulletin of informatics and cybernetics

      Volume: 53 Issue: 1 Pages: 1-19

    • DOI

      10.5109/4151124

    • NAID

      120006952128

    • ISSN
      0286-522X, 2435-743X
    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Spatial extension of generalized autoregressive conditional heteroskedasticity models2020

    • Author(s)
      Takaki Sato and Yasumasa Matsuda
    • Journal Title

      Spatial Economic Analysis

      Volume: 16 Issue: 2 Pages: 1742-1780

    • DOI

      10.1080/17421772.2020.1742929

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] High-dimensional Two-sample Test Procedures under the Strongly Spiked Eigenvalue Model2020

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Journal Title

      Ouyou toukeigaku

      Volume: 49 Issue: 3 Pages: 109-125

    • DOI

      10.5023/jappstat.49.109

    • NAID

      130008022515

    • ISSN
      0285-0370, 1883-8081
    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A firm foundation for statistical disclosure control2020

    • Author(s)
      Hoshino Nobuaki
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: 3 Issue: 2 Pages: 721-746

    • DOI

      10.1007/s42081-020-00086-9

    • NAID

      210000163233

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Robust modal regression with direct gradient approximation of modal regression risk2020

    • Author(s)
      H. Sasaki, T Sakai, T. Kanamori
    • Journal Title

      Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence

      Volume: 124 Pages: 380-389

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A Unified Statistically Efficient Estimation Framework for Unnormalized Models2020

    • Author(s)
      M. Uehara, T. Kanamori, T. Takenouchi, T. Matsuda
    • Journal Title

      Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics

      Volume: 108 Pages: 809-819

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Generalization bound of globally optimal non-convex neural network training: Transportation map estimation by infinite dimensional Langevin dynamics2020

    • Author(s)
      Suzuki Taiji
    • Journal Title

      Advances in Neural Information Processing Systems

      Volume: 33 Pages: 19224-19237

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Variable selection in multivariate linear models for functional data via sparse regularization2020

    • Author(s)
      Hidetoshi Matsui, Yuta Umezu
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: - Issue: 2 Pages: 453-467

    • DOI

      10.1007/s42081-019-00055-x

    • NAID

      210000179793

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Log-periodogram regression of two-dimensional intrinsic stationary ranodm fields2020

    • Author(s)
      Yoshihiro,Yajima and Yasumasa, Matsuda.
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: 3 Issue: 1 Pages: 333-347

    • DOI

      10.1007/s42081-020-00078-9

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Evaluation of regional variations in healthcare utilization2020

    • Author(s)
      Ibuka Yoko、Matsuda Yasumasa、Shoji Keishi、Ishigaki Tsukasa
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: 3 Issue: 1 Pages: 349-365

    • DOI

      10.1007/s42081-020-00082-z

    • NAID

      210000159752

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Geometric consistency of principal component scores for high‐dimensional mixture models and its application2019

    • Author(s)
      Yata Kazuyoshi、Aoshima Makoto
    • Journal Title

      Scandinavian Journal of Statistics

      Volume: - Issue: 3 Pages: 899-921

    • DOI

      10.1111/sjos.12432

    • NAID

      120007163354

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Bias-corrected support vector machine with Gaussian kernel in high-dimension, low-sample-size settings2019

    • Author(s)
      Nakayama Yugo、Yata Kazuyoshi、Aoshima Makoto
    • Journal Title

      Annals of the Institute of Statistical Mathematics

      Volume: - Issue: 5 Pages: 1-30

    • DOI

      10.1007/s10463-019-00727-1

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Inference on high-dimensional mean vectors by the data transformation technique2024

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      IMS Asia Pacific Rim Meeting 2024
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Asymptotic properties of kernel k-means under high dimensional settings2024

    • Author(s)
      Kento Egashira, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      IMS Asia Pacific Rim Meeting 2024
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Convergence of mean field Langevin dynamics and its application to neural network optimization2024

    • Author(s)
      Taiji Suzuki
    • Organizer
      The Mathematics of Data
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Non-sparse modeling for high-dimensional data2023

    • Author(s)
      Makoto Aoshima
    • Organizer
      Statistical Week 2023(基調講演)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Threshold-based PCA in high-dimensional settings2023

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      TMU International Conference on Statistical Modelling and Inference 2023
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Threshold-based Sparse PCA for high-dimensional data based on the noise-reduction methodology2023

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      Statistical Week 2023
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Automatic sparse PCA for high-dimensional data and its applications2023

    • Author(s)
      Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      Seminar on Institute of Statistical Science, Academia Sinica
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Estimation of the strongly spiked eigenstructure in high-dimensional settings2023

    • Author(s)
      Kazuyoshi Yata, Aki Ishii, Makoto Aoshima
    • Organizer
      The 6th International Conference on Econometrics and Statistics
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Contrastive principal component analysis in high dimension low sample size2023

    • Author(s)
      Shao-Hsuan Wang, Kazuyoshi Yata
    • Organizer
      The 6th International Conference on Econometrics and Statistics
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Quadratic classifiers for high-dimensional noisy data2023

    • Author(s)
      Aki Ishii, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      The 6th International Conference on Econometrics and Statistics
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Asymptotic behaviors of k-means under high dimensional settings2023

    • Author(s)
      Kento Egashira, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      The 6th International Conference on Econometrics and Statistics
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Asymptotic properties of kernel k-means for high dimensional data2023

    • Author(s)
      Kento Egashira, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      International Symposium on Recent Advances in Theories and Methodologies for Large Complex Data
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 強スパイク固有値モデルにおける高次元共分散行列の統計的推測2023

    • Author(s)
      矢田和善, 石井 晶, 青嶋 誠
    • Organizer
      統計関連学会連合大会 応用統計学会企画セッション「高次元統計解析の最近の発展」
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Automatic sparse PCA and its applications2023

    • Author(s)
      矢田和善
    • Organizer
      Seminar on Bayesian Computation
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Functional mixture cure model and its application2023

    • Author(s)
      Yuko Araki
    • Organizer
      The 6th International Conference on Econometrics and Statistics
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 関数データに基づく混合治癒モデルの提案2023

    • Author(s)
      荒木由布子
    • Organizer
      第37回日本計算機統計学会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 外れ値タスクに頑健な凸クラスタリング回帰2023

    • Author(s)
      岡崎彰良,川野秀一
    • Organizer
      2023年度統計関連学会連合大会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Multi-task learning regression based on convex clustering2023

    • Author(s)
      Okazaki, A. and Kawano, S.
    • Organizer
      The 16th International Conference of the ERCIM WG on Computational and Methodological Statistics
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Feature learning via mean field neural networks and anisotropic features2023

    • Author(s)
      Taiji Suzuki, Denny Wu, Atsushi Nitanda and Kazusato Oko
    • Organizer
      International Symposium on Recent Advances in Theories and Methodologies for Large Complex Data
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Rank tests for randomness against time-varying MA alternative2023

    • Author(s)
      Hirukawa, J.
    • Organizer
      The 6th International Conference on Econometrics and Statistics
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Innovation algorithm of fractionally integrated (I(d)) process and applications on the estimation of parameters2023

    • Author(s)
      Hirukawa, J., Fujimori, K.
    • Organizer
      International Conference on Time Series Econometrics and Model Checking
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 高次元小標本における非階層型クラスタリングの一致性について2023

    • Author(s)
      江頭健斗, 矢田和善,青嶋誠
    • Organizer
      京都大学数理解析研究所研究集会「種々の統計的モデルにおける推測方式の有効性」
    • Related Report
      2022 Annual Research Report
  • [Presentation] 高次元現象の統計数理2022

    • Author(s)
      青嶋誠
    • Organizer
      日本数学会秋季総合分科会(企画特別講演)
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Estimation of eigenvectors for linear combinations of high-dimensional covariance matrices and its applications2022

    • Author(s)
      Kazuyoshi Yata, Aki Ishii, Makoto Aoshima
    • Organizer
      The 5th International Conference on Econometrics and Statistics
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Asymptotic behaviors of hierarchical clustering under high dimensional settings2022

    • Author(s)
      Kento Egashira, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      The 5th International Conference on Econometrics and Statistics
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Geometric classifiers for high-dimensional noisy data2022

    • Author(s)
      Kazuyoshi Yata, Aki Ishii, Makoto Aoshima
    • Organizer
      JMVA 50th Jubilee volume follow-up webinar
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] High dimensional and low sample size case statistics for the screening on crystal information of the solid-state electrolytes2022

    • Author(s)
      Hirotaka Sakamoto, Kazuyoshi Yata, Hisatsugu Yamaski, Makoto Aoshima
    • Organizer
      2022 Materials Research Society Spring Meeting
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 強スパイク固有値モデルにおける高次元統計的推測2022

    • Author(s)
      矢田和善
    • Organizer
      応用統計学会年会(特別講演)
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 階層的クラスタリングの高次元漸近的振舞い2022

    • Author(s)
      江頭健斗, 矢田和善,青嶋誠
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2022 Annual Research Report
  • [Presentation] Hierarchical clustering and its asymptotic behaviors in high-dimensional settings2022

    • Author(s)
      江頭健斗, 矢田和善,青嶋誠
    • Organizer
      科研費シンポジウム「統計科学の開拓」
    • Related Report
      2022 Annual Research Report
  • [Presentation] A family of generalized multinomial distribution2022

    • Author(s)
      Hoshino, N.
    • Organizer
      International Conference on Statistical Distributions and Applications 2022
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Discretizing the normalized infinitely divisible distribution2022

    • Author(s)
      星野伸明
    • Organizer
      2022年度統計関連学会連合大会
    • Related Report
      2022 Annual Research Report
  • [Presentation] 正方分割表における準対称性とその周辺2022

    • Author(s)
      田畑耕治
    • Organizer
      応用統計学会
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 高次元データにおける交絡調整を伴う最大値型検定2022

    • Author(s)
      片山翔太
    • Organizer
      統計関連学会連合大会
    • Related Report
      2022 Annual Research Report
  • [Presentation] 未測定交絡因子が存在する場合における制御された直接効果の推定法とその性質について2022

    • Author(s)
      岡本憲曉, 片山翔太, 星野崇宏
    • Organizer
      日本計算機統計学会第36回シンポジウム
    • Related Report
      2022 Annual Research Report
  • [Presentation] 高次元データ学習における特徴学習の優位性2022

    • Author(s)
      鈴木大慈
    • Organizer
      科研費シンポジウム「大規模複雑データの理論と方法論~新たな発展と関連分野への応用~」
    • Related Report
      2022 Annual Research Report
  • [Presentation] Deep learning theory from feature learning perspective2022

    • Author(s)
      Taiji Suzuki
    • Organizer
      The 14th Asian Conference on Machine Learning (Keynote talk)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Convolutional regression for big spatial data2022

    • Author(s)
      Yasumasa Matsuda
    • Organizer
      The 5th International Conference on Econometrics and Statistics
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Spatial regression discontinuity design2022

    • Author(s)
      Masayuki Sawada, Yasumasa Matsuda, Daisuke Kurisu, Takuya Ishihara
    • Organizer
      Risk and Statistics, 3rd Tohoku-ISM-Ulm joint workshop
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Test for outlier detection by high-dimensional PCA2022

    • Author(s)
      Yugo Nakayama, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      The 5th International Conference on Econometrics and Statistics
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Multiple outlier detection test with PCA in high-dimension, low-sample-size settings2022

    • Author(s)
      中山優吾, 矢田和善, 青嶋誠
    • Organizer
      統計関連学会連合大会
    • Related Report
      2022 Annual Research Report
  • [Presentation] 高次元主成分分析における頑健性について2022

    • Author(s)
      中山優吾, 矢田和善, 青嶋誠
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2022 Annual Research Report
  • [Presentation] 高次元におけるカーネル主成分分析の漸近的性質とその応用2022

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      科研費シンポジウム「多様な高次元モデルの理論と方法論:最前線の動向」
    • Related Report
      2021 Annual Research Report
  • [Presentation] 階層的クラスタリングの高次元漸近的性質について2022

    • Author(s)
      江頭健斗、矢田和善、青嶋 誠
    • Organizer
      京都大学数理解析研究所研究会「ベイズ法と統計的推測」
    • Related Report
      2021 Annual Research Report
  • [Presentation] Dynamic panel analysis of subjective well-being in the COVID-19 outbreak in Japan2022

    • Author(s)
      Sato T., Li A., Matsuda Y.
    • Organizer
      Symposium of Yotta Informatics - Research Platform for Yotta-Scale Data Science 2022
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Innovation algorithm of fractionally integrated (I(d)) process and applications on the estimation of parameters2022

    • Author(s)
      Hirukawa J., Fujimori K.
    • Organizer
      Waseda International Symposium on Topological Data Science, Causality, Analysis of Variance & Time Series
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 高次元小標本の統計学:非スパース性と巨大ノイズ(特別講演)2021

    • Author(s)
      青嶋 誠
    • Organizer
      統計数理研究所リスク解析戦略研究センターシンポジウム
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 単一強スパイク固有値モデルにおける高次元平均ベクトルの2標本検定(応用統計学会学会賞受賞者講演)2021

    • Author(s)
      石井 晶
    • Organizer
      統計関連学会連合大会
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] ガウシアンカーネルに基づく高次元データの分類問題(特別講演)2021

    • Author(s)
      中山優吾
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 高次元データにおけるノイズ構造の高精度な解析に基づく統計的推測2021

    • Author(s)
      矢田和善、石井 晶、青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] High-dimensional quadratic classifiers under the strongly spiked eigenvalue model2021

    • Author(s)
      Ishii A., Yata K., Aoshima M.
    • Organizer
      IISA 2021 Conference
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Tests for covariance structures in high-dimensional data2021

    • Author(s)
      Yata K., Ishii A., Aoshima M.
    • Organizer
      The 4th International Conference on Econometrics and Statistics
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] High-dimensional classifiers under the strongly spiked eigenvalue model2021

    • Author(s)
      Ishii A., Yata K., Aoshima M.
    • Organizer
      The 4th International Conference on Econometrics and Statistics
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Clustering by kernel PCA with Gaussian Kernel and tuning for high-dimensional data2021

    • Author(s)
      Nakayama Y., Yata K., Aoshima M.
    • Organizer
      The 4th International Conference on Econometrics and Statistics
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Sparse PCA for high-dimensional data based on the noise-reduction methodology and its application2021

    • Author(s)
      Yata K., Aoshima M.
    • Organizer
      The 63rd ISI World Statistics Congress
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Asymptotic properties of high-dimensional kernel PCA and its applications2021

    • Author(s)
      Nakayama Y., Yata K., Aoshima M.
    • Organizer
      International Symposium on New Developments of Theories and Methodologies for Large Complex Data
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Data-adaptive groupwise test for genomic studies via the Yanai's generalized coefficient of determination2021

    • Author(s)
      Ueki M.
    • Organizer
      Bernoulli-IMS 10th World Congress in Probability and Statistics
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] データ科学による遺伝統計解析2021

    • Author(s)
      植木優夫
    • Organizer
      脳病態数理・データ科学セミナー
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Spatial Dynamic Panel Models for Multilevel Dataset with Applications to Japanese Happiness Surveys2021

    • Author(s)
      Sato T., Matsuda Y.
    • Organizer
      The XV World Conference of Spatial Econometrics Association
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] The self-weighted LAD estimator for unit root process with locally stationary innovations2021

    • Author(s)
      Hirukawa J., Akashi F., Lee S.
    • Organizer
      第3回日本統計研究所研究集会~様々な多様体上における統計的推測~
    • Related Report
      2021 Annual Research Report
  • [Presentation] Deep Learning Theory and Optimization (Tutorial talk)2021

    • Author(s)
      Suzuki T.
    • Organizer
      The 13th Asian Conference on Machine Learning
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] AutoLL: Automatic Linear Layout of Graphs based on Deep Neural Network2021

    • Author(s)
      Watanabe C., Suzuki T.
    • Organizer
      IEEE Symposium Series on Computational Intelligence
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 高次元におけるカーネル主成分分析の漸近的性質と異常値の検出への応用2021

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      日本数学会年会
    • Related Report
      2020 Annual Research Report
  • [Presentation] 高次元スパースPCAの一致性とその応用2020

    • Author(s)
      矢田和善、青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Tests of high-dimensional correlation matrices under the strongly spiked eigenvalue model2020

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] 高次元小標本における異常値の検出2020

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      統計関連学会連合大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] 高次元固有ベクトルの検定について2020

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Clustering by kernel principal component analysis for high-dimensional data2020

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Sparse PCA by the noise-reduction methodology2020

    • Author(s)
      矢田和善、青嶋 誠
    • Organizer
      科研費シンポジウム「大規模複雑データの理論と方法論:最前線の動向と新たな展開」
    • Related Report
      2020 Annual Research Report
  • [Presentation] 高次元カーネル主成分分析に基づく異常値の検出2020

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      科研費シンポジウム「大規模複雑データの理論と方法論:最前線の動向と新たな展開」
    • Related Report
      2020 Annual Research Report
  • [Presentation] 高次元データにおける異常値の検出について2020

    • Author(s)
      中山優吾、矢田和善、青嶋 誠
    • Organizer
      科研費シンポジウム「機械学習・統計学・最適化の数理とAI技術への展開」
    • Related Report
      2020 Annual Research Report
  • [Presentation] 差分プライバシーの母数の決め方2020

    • Author(s)
      星野伸明
    • Organizer
      統計関連学会連合大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] 一般化スコアマッチによる切断分布の推定2020

    • Author(s)
      Song Liu, Takafumi Kanamori
    • Organizer
      統計関連学会連合大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] 無限次元勾配ランジュバン動力学による深層学習の最適化と汎化誤差解析2020

    • Author(s)
      鈴木大慈
    • Organizer
      第23回情報論的学習理論ワークショップ
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] 深層学習の数理:カーネル法,スパース推定との接点2020

    • Author(s)
      鈴木大慈
    • Organizer
      画像の認識・理解シンポジウム MIRU2020
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] Variable selection in varying-coefficient functional linear models2020

    • Author(s)
      Matsui, H.
    • Organizer
      13th International Conference of the ERCIM WG on Computational and Methodological Statistics
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 変化係数関数加法モデルと農業データ分析への応用2020

    • Author(s)
      松井秀俊
    • Organizer
      統計関連学会連合大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] 社会科学における空間データ分析と幸福度研究への応用2020

    • Author(s)
      松田安昌
    • Organizer
      実験家のためのデータ駆動科学オンラインセミナー第5回「人間と社会のデータ科学」
    • Related Report
      2020 Annual Research Report
  • [Presentation] 時空間ARMAモデル2020

    • Author(s)
      松田安昌
    • Organizer
      東京大学応用統計ワークショップ
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] Space time ARMA model2020

    • Author(s)
      松田安昌
    • Organizer
      科研費シンポジウム「Recent Progress in Spatial and/or Spatio-temporal Data Analysis」
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 多変量空間MAモデル2020

    • Author(s)
      佐藤宇樹、松田安昌
    • Organizer
      統計関連学会連合大会
    • Related Report
      2020 Annual Research Report
  • [Book] Research Papers in Statistical Inference for Time Series and Related Models - Essays in Honor of Masanobu Taniguchi2023

    • Author(s)
      Liu, Y., Hirukawa, J., Kakizawa, Y.
    • Total Pages
      607
    • Publisher
      Springer
    • ISBN
      9789819908028
    • Related Report
      2023 Annual Research Report
  • [Book] Pioneering Works on Distribution Theory2021

    • Author(s)
      Hoshino N., Mano S., Shimura T.
    • Total Pages
      128
    • Publisher
      Springer, Singapore
    • ISBN
      981159662X
    • Related Report
      2020 Annual Research Report
  • [Remarks] 青嶋研究室ホームページ

    • URL

      https://www.math.tsukuba.ac.jp/~aoshima-lab/jp/

    • Related Report
      2023 Annual Research Report 2022 Annual Research Report 2021 Annual Research Report 2020 Annual Research Report
  • [Remarks] 青嶋研究室ホームページ 科研費基盤研究(A) シンポジウム

    • URL

      https://www.math.tsukuba.ac.jp/~aoshima-lab/jp/kiban_A.html

    • Related Report
      2023 Annual Research Report 2022 Annual Research Report 2021 Annual Research Report 2020 Annual Research Report
  • [Funded Workshop] International Symposium on Recent Advances in Theories and Methodologies for Large Complex Data2023

    • Related Report
      2023 Annual Research Report
  • [Funded Workshop] Risk and Statistics, - 3rd Tohoku-Ulm-ISM joint workshop2022

    • Related Report
      2022 Annual Research Report
  • [Funded Workshop] Applications of Data Science in Social Science in honor of Prof. Nobuhiko Terui2022

    • Related Report
      2021 Annual Research Report
  • [Funded Workshop] International Symposium on New Developments of Theories and Methodologies for Large Complex Data2021

    • Related Report
      2020 Annual Research Report
  • [Funded Workshop] International Workshop on Recent Progress in Spatial and/or Spatio-temporal Data Analysis2020

    • Related Report
      2020 Annual Research Report

URL: 

Published: 2020-04-28   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi