Project/Area Number |
20J00434
|
Research Category |
Grant-in-Aid for JSPS Fellows
|
Allocation Type | Single-year Grants |
Section | 国内 |
Review Section |
Basic Section 11010:Algebra-related
|
Research Institution | Kyoto University (2022) Kanazawa University (2020-2021) |
Principal Investigator |
鈴木 美裕 京都大学, 理学研究科, 助教
|
Project Period (FY) |
2020-04-24 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 保型表現 / 保型L関数 / 保型形式の周期 / 概均質ベクトル空間 / 密度定理 |
Outline of Research at the Start |
本研究は, 保型形式及びそれに付随するp進群の表現の周期の解析的研究である. 表現の周期は, L関数という数論的に重要な関数の解析的性質と密接に関係していると考えられており, 様々な研究や予想がある. 本研究では, 解析的な手法により, 0でない周期の存在とL関数の零点や極の存在の関係について既存の研究を拡張し, 上述の予想の一例であるPrasad-Takloo-Bighash予想を解決することを目標とする. また, 周期つきの概均質ゼータ関数を用いた解析数論的な新しい手法を周期の研究に導入することで, 未知の現象の発見と新たな研究領域の創造にも取り組む.
|
Outline of Annual Research Achievements |
本研究では, 保型形式の周期と保型L関数の解析的性質を結びつけることを目標にしている. 今年度は, 保型形式の周期積分と保型L関数の特殊値との明示的な関係式を求めるという問題に取り組んだ. そのような関係式は, 局所体上の群の表現の行列係数を積分して得られる局所周期を使って, Euler積の形で書けると期待される. 本研究で扱う線型周期の場合, そのような行列係数の積分は一般に収束しないため, 積分の正規化が必要になる. 本年度の研究では, 局所相対截頭作用素を使って積分を正規化し, 正規化した積分の解析接続を示すことで局所周期を構成することができた. また, 前年度まで取り組んでいた, 局所体上の一般線型群とその内部形式の表現が線型周期を持つための条件に関するプラサド-タクルー=ビガシュ予想(PTB予想)に対しても, 残っている場合(剰余標数2の場合)も含めて証明できる可能性があることがわかった. 局所体上の一般線型群表現に対するラングランズ対応を, 内部形式の表現もまとめて扱う形で書き直すと, 局所ガン-グロス-プラサド予想と同様の形でPTB予想を再定式化することが可能である. この再定式化した形のPTB予想の主張は, チェン-ワンによって一般に予想されている重複度公式から直ちに従うことがわかるので, 線型周期に対する重複度公式の証明に問題が帰着される. これは当初想定していなかった進展であり, 今後の研究では, 線型周期に対する重複度公式の証明に取り組む.
|
Research Progress Status |
令和4年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
令和4年度が最終年度であるため、記入しない。
|
Report
(3 results)
Research Products
(20 results)