• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Inverse problems for hyperbolic partial differential equations on Lorentzian manifolds

Research Project

Project/Area Number 20J11497
Research Category

Grant-in-Aid for JSPS Fellows

Allocation TypeSingle-year Grants
Section国内
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionThe University of Tokyo

Principal Investigator

高瀬 裕志  東京大学, 大学院数理科学研究科, 特別研究員(DC2)

Project Period (FY) 2020-04-24 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥1,900,000 (Direct Cost: ¥1,900,000)
Fiscal Year 2021: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2020: ¥1,000,000 (Direct Cost: ¥1,000,000)
Keywords逆問題 / 双曲型偏微分方程式 / 幾何解析 / ローレンツ多様体 / 波動方程式
Outline of Research at the Start

時間依存する係数をもつ双曲型偏微分方程式について,波源項や方程式の係数を決定する逆問題,及び解の局所的な一意性を保証する一意接続性定理に関して完全な解決が待たれている.そこで本研究では曲がった時空間を記述するローレンツ多様体上での波動方程式に対し微分幾何学を取り入れた解析手法を用いることで,これらの課題に対し統一的なアプローチを用い一意性及び安定性を証明する.

Outline of Annual Research Achievements

まず空間二次元における波動方程式のコーシー問題を考察した.時間軸も含めた3次元ユークリッド空間上の円柱面に斉次コーシーデータを与えたときのコーシー問題に対し,解の一意性が破綻する非自明な解が無限個存在することを証明した.円柱面の近傍の有界な円環領域を加算無限個に分割し,ベッセル関数の漸近解析と1の分割を用いて構成的に証明した.さらに構成した無限個の非一意解が,光学迷彩の一種であるクローキング技術に応用できる可能性を示唆した.

次に時間依存する係数を含む一階の非退化双曲型偏微分方程式の波源項決定逆問題及び係数決定逆問題に対し,大域リプシッツ型安定性を証明した.係数が生成するベクトル場に対し散逸性という概念を新たに導入しカーレマン評価を確立した.しかしながら本成果は係数の時間依存性に強い仮定を課しており,これを取り除けるか検証することは今後の課題である.また主要部の係数が時間のみに依存する一階の退化双曲型偏微分方程式に対し,カーレマン評価を確立し可観測性評価を証明した.方程式及びその解を正則性を保ったまま時間負方向へ拡張することで,退化型方程式に対しても大域カーレマン評価を確立する手法を開発した.

最後に主要部が連立する強連立型の一階の対称双曲型偏微分方程式に対し,カーレマン評価を確立し可観測性評価を証明した.もともと二階の方程式に対し用いられる第二パラメーターを導入することで大域カーレマン評価を確立し,強連立型方程式においても従来の手法が適用できることを解明した.

Research Progress Status

令和3年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

令和3年度が最終年度であるため、記入しない。

Report

(2 results)
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • Research Products

    (16 results)

All 2022 2021 2020 Other

All Int'l Joint Research (1 results) Journal Article (6 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 6 results,  Open Access: 3 results) Presentation (8 results) (of which Int'l Joint Research: 5 results,  Invited: 5 results) Remarks (1 results)

  • [Int'l Joint Research] レッジョ・カラブリア大学(イタリア)

    • Related Report
      2021 Annual Research Report
  • [Journal Article] Inverse source problem related to one-dimensional Saint-Venant equation2022

    • Author(s)
      Takase Hiroshi
    • Journal Title

      Applicable Analysis

      Volume: 101 Issue: 1 Pages: 35-47

    • DOI

      10.1080/00036811.2020.1727893

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Infinitely many non-uniqueness examples for Cauchy problems of the two-dimensional wave and Schrodinger equations2021

    • Author(s)
      Takase Hiroshi
    • Journal Title

      Proceedings of the Japan Academy, Series A, Mathematical Sciences

      Volume: 97 Issue: 7 Pages: 45-50

    • DOI

      10.3792/pjaa.97.009

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Inverse problems for first-order hyperbolic equations with time-dependent coefficients2021

    • Author(s)
      Floridia Giuseppe、Takase Hiroshi
    • Journal Title

      Journal of Differential Equations

      Volume: 305 Pages: 45-71

    • DOI

      10.1016/j.jde.2021.10.007

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Observability inequalities for degenerate transport equations2021

    • Author(s)
      Floridia Giuseppe、Takase Hiroshi
    • Journal Title

      Journal of Evolution Equations

      Volume: 21 Issue: 4 Pages: 5037-5053

    • DOI

      10.1007/s00028-021-00740-z

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] クローキングと波動方程式のコーシー問題の非一意性2021

    • Author(s)
      髙瀬裕志
    • Journal Title

      数理科学実践研究レター2021

      Volume: 7 Pages: 1-6

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Inverse source problem for a system of wave equations on a Lorentzian manifold2020

    • Author(s)
      Takase Hiroshi
    • Journal Title

      Communications in Partial Differential Equations

      Volume: 45 Issue: 10 Pages: 1414-1434

    • DOI

      10.1080/03605302.2020.1774897

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Inverse problems for wave equations with time-dependent principal parts2022

    • Author(s)
      Takase Hiroshi
    • Organizer
      RIMS Workshop on ``Theory and practice in inverse problems''
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Inverse problems for first-order hyperbolic equations2021

    • Author(s)
      Takase Hiroshi
    • Organizer
      Analysis and Numerics of Design, Control and Inverse Problems
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Inverse problems through Carleman estimates for first-order hyperbolic equations2021

    • Author(s)
      Takase Hiroshi
    • Organizer
      Workshop for young scholars ``Control and inverse problems on waves, oscillations and flows''
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Observability inequalities for advection equations2021

    • Author(s)
      Takase Hiroshi
    • Organizer
      The Third Russia--Japan Workshop ``Mathematical analysis of fracture phenomena for elastic structures and its applications''
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Inverse problems for first-order hyperbolic equations2021

    • Author(s)
      髙瀬裕志
    • Organizer
      日本数学会年会
    • Related Report
      2021 Annual Research Report
  • [Presentation] Inverse source problem for a system of wave equations on Lorentzian manifolds2021

    • Author(s)
      髙瀬裕志
    • Organizer
      日本数学会年会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Inverse problems for general first-order hyperbolic equations2020

    • Author(s)
      Takase Hiroshi
    • Organizer
      The Second Russia-Japan Workshop “Mathematical analysis of fracture phenomena for elastic structures and its applications”
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Inverse problems for wave equations on Lorentzian manifolds2020

    • Author(s)
      髙瀬裕志
    • Organizer
      愛媛大 学解析セミナー
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Remarks] researchmap

    • URL

      https://researchmap.jp/Hiroshi_Takase

    • Related Report
      2021 Annual Research Report

URL: 

Published: 2020-07-07   Modified: 2024-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi